簡易檢索 / 詳目顯示

研究生: 費聿亞
Fei, Yu-Ya
論文名稱: 一個高精確度的固定頻寬布氏乘法器採用可調整的統計方法
A High-Accuracy Fixed-Width Booth Multiplier with Adaptive Statistical Algorithm
指導教授: 張慶元
Chang, Tsin-Yuan
口試委員: 洪進華
Hong, Jin-Hua
陳元賀
Chen, Yuan-Ho
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2012
畢業學年度: 101
語文別: 中文
論文頁數: 47
中文關鍵詞: 錯誤補償固定頻寬乘法器改良式布氏演算法
外文關鍵詞: error compensation, fixed-width multiplier, modified Booth algorithm
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在數位訊號處理系統中,乘法器是不可或缺的角色。但在有些數位訊號處理的應用上,乘法器的輸入以及輸出需要相同的位元數,如此就必須捨棄掉一部分的乘積結果,而這捨棄的部份進而影響到了乘法器的精準度,因此許多人致力於研究適當的補償方法,以提高此種乘法器的精準度。
    本篇論文提出了一個可藉由統計範圍不同而改變其精準度的固定頻寬布氏乘法器。本文所提出的乘法器中的布氏演算法是採用radix-4的演算法去改良,將要捨去的部分乘積一部分先做了運算,且加上四捨五入的概念而得到一個新的真值表。在補償值方面,我們藉由統計部分乘積結果與布氏演算法的編碼結果找出其相互關係,進而推導出其補償公式。另外我們進一步藉由統計部分乘積的範圍再次探討與布氏編碼的關係,提出的適當的改良方法,最後導出與精準度參數和布氏編碼結果相關的補償公式。


    Multiplier is an important component in the application of digital signal processing (DSP) systems. However, it is desirable to remain the same bit width for the multiplication in some applications. For this reason, fixed-width multipliers only keeps the most significant half part of the products and a large error would be produced. Thus, many compensation methods are provided to solve this problem.
    In this research, an error compensation method with different statistical result for fixed-width Booth multiplier is produced. Booth algorithm in this research has been improved from radix-4 Booth algorithm. The modified Booth algorithm pre-calculated some of the partial products and combined the rounding, so that we can get a new true table with higher accuracy. About the compensation value, we want to find the relationship between the statistical result of the partial product and the result of the modified Booth algorithm. Furthermore, we statistic different range of the partial product and discuss the new problem about the relationship. Finally, a compensation function with different statistical result produced.

    目錄 1.介紹與研究動機 1 1.1介紹 1 1.2 研究動機 5 1.3 前人方法 6 1.4 本篇論文內容 7 2.乘法器 8 2.1前言 8 2.2陣列乘法器 10 2.2.1部分乘積 10 2.2.2 部分乘積的累加 11 2.3布氏乘法器 12 2.3.1 Radix-2 布氏乘法器 12 2.3.2 改良式布氏乘法器 13 2.3.3 固定頻寬改良式布氏乘法器 17 3.補償方法 20 3.1補償方法推導 20 3.1.1補償值 20 3.1.2統計方法 23 3.1.3補償公式 24 3.2可調整精確度之補償公式 30 3.2.1基本概念 30 3.2.2固定頻寬改良式布氏乘法器之補償 34 3.3.3可調整精確度之補償公式 38 4.實驗結果討論與結論 42 4.1模擬實驗結果比較 42 4.2 結論 45 5.參考目錄 46

    [1] Andrew D. Booth. ,“A signed binary multiplication technique”, The Quarterly Journal of Mechanics and Applied Mathematics, Volume IV, Pt. 2

    [2] Y. C. Lim,”Single-recision multiplier with reduced circuit complexity for signal processing applications,” IEEETrans. on Computers, Vol. 41, no. 10, pp. 1333-1336, 1992.

    [3] M. J. Schulte and E. E. Swartzlander Jr., “Truncated multiplication with correction constant,” Workshop on VLSI Signal Processing, VI, pp. 388-396, 1993.

    [4] S. S. Kidambi, F. El-Guibaly, and A. Antoniou, “Area-efficient multipliers for digital signal processing applications,” IEEE Trans. Circuits Syst. II, Vol. 43, no. 2, pp. 90-95, Feb. 1996.

    [5] J. M. Jou, S. R. Kuang, and R. D. Chen,”Design of low-error fixed-width multipliers for DSP applications,” IEEE Trans. Circuits Syst. II, Vol. 46, no. 6, pp. 836-842, Jun. 1999.

    [6] L. D.Van, S. S.Wang, and W. S. Feng, ”Design of the lower error fixed-width multiplier and its application,”IEEE Trans. on Circuits & Systems II, Vol. 47, no. 10, pp. 1112-1118, Oct. 2000.

    [7] L. D. Van and C. C. Yang, “Generalized low-error area-efficient fixed-width multipliers,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 52, no. 8, pp. 1608–1619, Aug. 2005.

    [8] J. S. Wang, C. N. Kuo, and T. H. Yang, “Low-power fixed width arraymultipliers,” in Proc. Int. Symp. Low Power Electron. Des., 2004, pp.307–312.

    [9] Y. C. Liao, H. C. Chang, and C. W. Liu, “Carry estimation for two’scomplement fixed-width multipliers,” in Proc. IEEE Workshop SignalProcessing Systems, 2006, pp. 345–350.

    [10] A. G. M. Strollo, N. Petra, and D. D. Caro, “Dual-tree error compensation for high performance fixed-width multipliers,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 52, no. 8, pp. 501–507, Aug. 2005.
    [11] S. J. Jou, M. H. Tsai, and Y. L. Tsao, “Low-error reduced-width Booth multipliers for DSP applications,” IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., vol. 50, no. 11, pp. 1470–1474, Nov. 2003.

    [12] K. J. Cho, K. C. Lee, J. G. Chung, and K. K. Parhi, “Design of low-error fixed-width modified Booth multiplier,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 12, no. 5, pp. 522–531, May 2004.

    [13] J. P. Wang, S. R. Kuang, and S. C. Liang, “High-accuracy fixed-width modified Booth multipliers for lossy applications,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 19, no. 1, pp. 52–60, Jan. 2011.

    [14] M. A. Song, L. D. Van, and S. Y. Kuo, “Adaptive low-error fixed-width Booth multipliers,” IEICE Trans. Fundam., vol. E90-A, no. 6, pp. 1180–1187, Jun. 2007.

    [15] C. H. Chang and R. K. Satzoda, “A low error and high performance multiplexer-based truncated multiplier,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 18, no. 12, pp. 1767–1771, Dec. 2010.

    [16] W. C. Yeh and .C. W. Jen, ”High-speed Booth encoded parallel multiplier design,” IEEE Transactions on Computers, Vol. 49 ,Issue: 7, pp. 692-701, Jul. 2000.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE