研究生: |
楊宗翰 Tsung-Han Yang |
---|---|
論文名稱: |
ZrTaTiNbSi非晶質合金薄膜之結構演變及其機性電性研究 Structure Evolution and Related Mechanical and Electrical Properties of ZrTaTiNbSi Glass Metal Film |
指導教授: |
甘炯耀博士
Dr. Jiong-yao Gan 葉均蔚博士 Dr. Jien-Wei Yeh |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2004 |
畢業學年度: | 92 |
語文別: | 中文 |
論文頁數: | 81 |
中文關鍵詞: | ZrTaTiNbSi 、高熵合金 、全約化徑向分布函數 、非晶質合金 |
外文關鍵詞: | ZrTaTiNbSi, High Entropy Alloy, reduced density function, amorphous alloy |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近幾十年來,多元金屬玻璃(multi-component glassy metal)由於具有一些優越獨特的物理特性及化學特性,已引起世界眾多學者的廣大興趣。在熱力學上,非晶質相一直被認為是一個不穩定相(unstable phase),因此在高溫熱處理下,其微結構將會逐漸改變為較穩定的結晶相。由於材料之結構和其物理性質息息相關,了解金屬玻璃結構改變機制以及其對材料物理性質的影響,是一有趣且重要問題。本論文即對這方面做了一系列的研究。
本實驗採用嶄新的合金設計概念--高熵合金,設計出ZrTaTiNbSi合金靶材,再利用直流磁控濺鍍,成功地鍍製出5元高熵合金的非晶質ZrTaTiNbSi合金薄膜。所鍍製出的薄膜採石英真空封管的方式,分別在473、573、673、773、873、973、1073及1173 K熱處理10分鐘。而後採用X光繞射分析與高解像穿透式電子顯微鏡分析作微結構分析,同時利用四點探針法量測電阻率,以及利用奈米壓痕法測量薄膜硬度。
從X-ray的繞射分析,經過不同溫度(473 K-1173 K)10分鐘熱處理後,其薄膜微結構不但保持非晶狀態,而且非晶質的峰值顯示溫度愈高,非晶質愈趨於無序化,與傳統觀察相反。同時,薄膜之電阻率從115 μΩ-cm(300 K,初鍍膜)提高4倍左右至432 μΩ-cm (1173 K退火10分鐘)。硬度也從2.29 GPa(300 K,初鍍膜)提高5倍左右至11.60 GPa (1173 K退火10分鐘)。從HR-TEM繞射圖形經傅立葉轉換的〝全約徑向分布函數〞(RDF)分析,可以清楚看到薄膜中第一配位數原子間距離趨向更大的分佈範圍,但實際上為兩種分佈所重疊,由於M’-Si鍵結長度為0.247 nm (M’=Zr, Ta, Ti, Nb)與M-M鍵結長度為0.300 nm(M=Zr, Ta, Ti, Nb, Si),分別與兩分佈中心相符合,所以我們推測在退火中,矽原子與其他金屬原子產生某種程度的聚集現象,但仍維持非晶質狀態。也就是原子在鍵結上發生了改變,更大的無序化現象主要是來自金屬鍵結模式逐漸轉變成金屬鍵結加共價鍵結模式,使鍵結長度有更大的分佈範圍。對於此一非傳統現象,本研究利用自由能的計算,發現高熵效應在此無序化現象中扮演重要的角色。此外,根據此一微結構演變,我們可以成功地解釋XRD曲線、電阻率及硬度,隨退火溫度非傳統性改變的現象。
In this work, Zr17Ta16Ti19Nb22Si26 amorphous thin films have been prepared from high entropy alloy target of the same composition. The derived films were subsequently annealed at various temperatures from 473 K to 1173 K for 10 minutes. X-ray diffraction results indicated that the films remained in amorphous form. Nevertheless, the amorphous scattering peak became more diffuse as the annealing temperature increased, suggesting the increase of degree of disorder with the annealing temperature. In addition, resistivity and hardness of films were also found to increase with annealing temperature. From the reduced density function, the metal-Si bonding was found to change gradually in the annealing process. In the as-deposited film, Si atoms stayed as solutes in the alloy matrix, whereas metal-Si bonding was more silicide like in the film subjected to 1173 K-anneal. The gradual formation of silicide-like bonding might cause the atomic spacing to split into two distinct lengths, lower the free electron density, enhance the electronic scattering, and bonding strength of amorphous films. This explained the more diffuse scattering peaks of XRD, and the increase of resistivity and hardness of post-annealed films.
1. H. S. Chen, H. J. Leamy and C. E. Miller, Annual Review of Materials Science, 10, 363, (1980)
2. B. B. Prasad, T. R.Anantharaman, A. K. Bhatnagar, D. Ganesan and R. Jagannathan, Journal of Non-crystalline Sloids, 61, 391, (1984)
3. Carlisle and H. Ben, Machine Design, 58, 1,24,(1986)
4. H. Jones, Rapid Solidification of Metals and Alloys, Ins. of Metallurgists, London, 1982
5. F. G. Yost, Journal of Materials Science, 16, 11, 3039, (1981)
6. P. Hassen, “Metallic Glasses”, Journal of Non-crystalline Solids, 56, 191, (1983)
7. J. Kramer, Z. Phys., 37, 19, (1934)
8. J. Kramer, Annln Phys., 37, 19, (1934)
9. A. Brener, D. E. Couch and E. K. Williams, J. Res. Natn. Bur. Stand., 44, 109, (1950)
10. P. Duwes, Trans. Am. Soc. Metals, 60, 607, (1967)
11. H. W. Kui, A. L. Greer and D. Turnbull, Applied Physics Letters, 45, 6, 615, (1984)
12. 程天一, 張守華編著, 快速凝固技術與新型合金, 宇航出版, 1990
13. A. Inoue, K. Kita, T. Masumoto and K. Ohtera, Japanese Journal of Applied Physics Part 2-Letters, 27, 10, 1796, (1998)
14. A. Inoue, K. Kita, T. Masumoto and T. Zhang, Materials Transactions, JIM, 30, 9, 722, (1998)
15. A. Inoue, T. Masumoto and T. Zhang, Materials Transactions, JIM, 31, 3, 177, (1999)
16. A. Inoue, T. Masumoto, U.S. Patent No. 5032196, Japanese Patent 07-122120.
17. A. Greer:Nature, 366, 303, (1993)
18. A. Inoue, Bulk Amorphous Alloys, 2, Trans. Tech. Publication, Zurich, 28, (1999)
19. A. Inoue, N. Nishiyama and H. Kimura, Materials Transactions, JIM, 38, 179, (1997)
20. A. Peker and W. L. Johnson, Applied Physics Letters, 63, 17, 2342, (1993)
21. A. Inoue, T. Zhang, K. Ohba, Materials Transaction, JIM, 36, 7, 876,(1995)
22. A. Inoue and J. S. Gook, Materials Transaction, JIM, 36, 7, 1282,(1995)
23. Y. He, T. D. Shen, and R. B. Schwarz, Metallurgical and Materials Transactions A-Physical Metallurgical and Materials Science, 29, 7, 1795, (1998)
24. T. Zhang and A. Inoue, Materials Transaction, JIM, 39, 10, 1001,(1998)
25. A. Inoue, T. Zhang, Materials Transaction, JIM, 40, 301,(1999)
26. F. E. Luborsky, “Amorphous Metallic Alloy”, Butterworth Monograph in Materials, London, UK, 1983, 19
27. A. Inoue, Mater. Trans. Japan. Inst. Metals, 36, 886(1995)
28. A. Inoue, Mater. Sci. Eng., A226, 357, (1997)
29. A. Inoue, A. Takeuchi and T. Zhang, Metall. Mater. Trans., 29A, 1779, (1998)
30. A. Inoue, “Bulk Amorphous Alloys”, Trans Tech Publication, Zurich, (1999)
31. A. Inoue and Rae Eun Park, Materials Transactions, JIM, 37, 11, 1715, (1996)
32. 黃國雄, “等莫耳比多元合金系統之研究”, 國立清華大學材料工程研究所碩士論文, 1996
33. 賴高廷, “高亂度合金微結構及性質探討”, 國立清華大學材料工程研究所碩士論文, 1998
34. 許雲翔, “以FCC及BCC元素為劃分配製等莫耳多元合金系統之研究”, 國立清華大學材料工程研究所碩士論文, 2000
35. 洪育德, ”Cu-Ni-Al-Co-Cr-Fe-Si-Ti高亂度合金之探討”, 國立清華大學材料工程研究所碩士論文, 2001
36. 陳家裕, “塗層用多元高熵合金之探討”, 國立清華大學材料工程研究所碩士論文, 2002
37. 童重縉, “Cu-Co-Ni-Cr-Al-Fe高熵合金變形結構與高溫特性之研究”, 國立清華大學材料工程研究所碩士論文, 2002
38. 陳敏睿, “添加V、Si、Ti對Al0.5CrCuFeCoNi高熵合金微結構與磨耗性質之影響”, 國立清華大學材料工程研究所碩士論文, 2003
39. 林佩君, “高頻軟磁高熵合金濺鍍薄膜之開發研究”, 國立清華大學材料工程研究所碩士論文, 2003
40. D. J. H. Cockayne, and D. R. Mckenzie, Acta Cryst. (1988), A44, 870
41. Wei-Hua Wang, Q Wei and S. Friedrich, Appl. Phys. Lett., (1997), 71, 1053
42. Warren, B. E. X-ray Diffraction Reading, MA: Addison Wesley.
43. Wei-Hua Wang, Q Wei and S. Friedrich, Physical Review B, 1998, 57, 8211
44. 王蓉, “電子衍射物理教程”, 北京冶金工業出版社, 2002
45. 許華偉, ” 碳化鈦及氮化鈦薄膜在Si(100)基板之磊晶成長”, 國立清華大學材料科學與工程學系,博士論文(1998)
46. Gang Xiao, and C. L. Chien, Appl.. Phys. Lett. 51 (16), p.1280, 1987.
47. 王起明, ”氮化鈦薄膜濺鍍之研究”, 國立清華大學材料科學與工程學系,碩士論文(1996)
48. C. L. Chien et al., J. Appl. Phys. 61(8), p.3311, 1987.
49. A. M. Howwastson, “An Introduction to Gas Discharge”Pergamon Press, Chapter. 4, 84 (1976)
50. Thin Film Deposition, (Principles & Practice), Donald L. Smith, 1995
51. Glow Discharge Processes, B. Chapman, John Willwy & Son, Inc. N. Y., Chapter. 6, 178 (1980)
52. S. H. Liou and C. L. Chien, J. Appl. Phys. 63(8), p.3311, 1987
53. Milton Oring, “The Materials Science of Thin Films”, Academic Press, 1992
54. 汪建民, “材料分析”, 民全書局, 1998
55. Dieter K. Schroder, “Semiconductor Material and Device Characterization”, Wiley, 1998
56. 郭正次, “交大材料奈米壓痕法操作手冊”
57. F. R. de Boer, R. Boom, “Cohesion In Metals, Transition Metal alloys”, Elsevier Science, 1988
58. David B. Williams and C. Barry Carter, “Transmission Electron Microscope”, Plenum Press, 1996
59. 吳泰伯, “X光繞射原理與材料結構分析”, 民全書局, 1996
60. Earl J. Kirkland, “Advanced Computing in Electron Microscopy”, Plenum Press, 1998
61. N. Mori, T. Oikawa and T. Katoh, Ultramicroscopy, 25, 195, (1988)
62. http://web.mit.edu/3.091
63. N. Mattern and S. Roth, Materials Science and Engineering A304–306, (2001), p311–p314
64. N. Wanderka and U. Czubayko, Materials Science and Engineering A270, (1999), p44–p47
65. Qiong Li and R. N. Shenoy, Journal of Materials Science, 32, (1997), p3401–p 3406
66. L. Q. Xing, C. Bertrand, J. P. Dallas, M. Cornet, Mat. Sci. Engng. A241, (1998), pp. 216-225.
67. F. Szuecs, C. P. Kim, W. L. Johnson, Acta mater., 49, (2001), p 1507–1513
68. Akihisa Inoue and Akihiro Makino, Journal of Magnetism and Magnetic Materials, 215-216, (2000), P246
69. J. P. Chu, Physical Review B 69, (2004), p113410
70. C. L. Chien et al., J. Appl. Phys. 61(8), p.3311, 1987
71. S. R. Elliott, Physics of amorphous materials, Longman, 1983
72. P. K. Huang, J. W. Yeh, Advanced Engineering Materials. 6, (1-2), (2004), pp.74-78.
73. C. Y. Hsu, J. W. Yeh, Metallurgical and Materials Transactions A, 31A, (2004), pp. 1465-1469.
74. J. W. Yeh, S. K. Chen, Advanced Engineering Materials, 6, (5), (2004), pp. 299-303.
75. L. yang, Applied Physical Letters, 84, (2004), 4998