簡易檢索 / 詳目顯示

研究生: 吳俊廷
Chun-Ting Wu
論文名稱: 小型介面設計原則在智慧型行動裝置上的應用-以緊急應變中心為例
Application of Small-Screen Design Principles on an Intellectual Mobile Device for Emergency Response Center
指導教授: 黃雪玲教授
Sheue-Ling Hwang
蘇國瑋教授
Kuo-Wei Su
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 工業工程與工程管理學系
Department of Industrial Engineering and Engineering Management
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 63
中文關鍵詞: 智慧型行動裝置決策型專家系統小型介面設計
外文關鍵詞: Intelligent mobile device, Expert support system, Small screen design
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著科技的進步與製造系統的自動化,如何能夠使所有的生產線正常運作,並且在發生異常情況時能夠盡快地排除,其中監控人員的緊急應變處理能力更是影響主要的因素,因此,本研究的目的為針對監控中心火災偵測系統發展緊急應變之專家系統,以達成提升緊急事件處理的效率。透過業界訪談,獲得火災處理緊急應變程序的相關資料及訓練手冊,運用知識擷取的技術將專家的知識以“IF-THEN-ELSE”的方式建立規則知識庫,以達到支援決策之輔助,並且將此套系統建置在智慧型行動裝置上,提升災害資訊的通訊能力及監控人員在緊急事件處理上的績效表現。
    透過決策型專家系統、小型介面設計原則等相關文獻的探討,利用Microsoft Visual Basic.NET程式開發工具進行智慧型行動裝置的專家系統建構,系統的驗證由二十名清華大學工業工程碩士為受測者,另外,受測者隨機分成兩組,一組為傳統的訓練方式,另一組使用FDESS的訓練方式,績效衡量的指標為:受測者訓練時間、安檢時間、安檢錯誤次數以及火災程序處理分數。實驗的結果顯示,使用FDESS的績效顯著優於傳統緊急應變的方式,在結論方面,提出本研究的貢獻、限制與未來發展性,有待未來加強更多的應用範圍及層面,能在緊急事故發生時有效地扮演決策支援的角色。


    Some incident and accident events may happen, such as earthquake, fire alarm, unstable voltage, chemical gas and chemical liquor leaking may occur in modern semiconductor manufacturing industry. In order to minimize the loss in the semiconductor production, the emergency response center (ERC) plays a quite important role in risk control. Therefore, the objective of this study is to develop the fire-detecting expert support system (FDESS) as a decision support tool that can support the supervisors of ERC in emergency operation control.
    After contacting with the ERC of a semiconductor industry, one gets some information about the procedure of emergency operation control. At the same time, the literatures of small interface design and emergency decision support system are reviewed. One used the Microsoft Visual Basic.NET program to establish the FDESS on intelligent mobile device. For evaluation of the different methods, each of the subjects was randomly assigned into one of two groups, the control group or experiment group. The control group used manual to learn about the tasks of safety inspection and emergency response control, whereas the experiment group used personal digital assistant (PDA) device to learn about the tasks of safety inspection and emergency response control.
    By the results of the experiment, we found that the method of handling the emergency response control significantly influences performance in fire control, the use of FDESS group spent significantly less time and got significantly more test scores in fire control than traditional group. In the future, it is worth to enrich the FDESS for emergency response control and risk assessment.

    Table of Contents Abstract II Table of Contents IV List of Figures VI List of Tables VII Chapter 1 Introduction 1 1.1Motivation 1 1.2 Importance 2 1.3 Objectives 3 1.4 Research Framework 3 Chapter 2 Literature Review 5 2.1 User Interface Design 5 2.1.1 Human-Computer Interaction (HCI) 6 2.1.2 Promotion of Mobile Environment 7 2.1.3 The Features of Small-Screen 9 2.2 Emergency Response System 12 2.2.1 Decision Support System (DSS) 13 2.2.2 Expert System (ES) 15 Chapter 3 Research Methodology 21 3.1 Exploration of Current Monitoring System 21 3.1.1 Profile of Emergency Response Center (ERC) 21 3.1.2 Tasks of Emergency Monitoring 22 3.1.3 The Procedures of Emergency Operation 25 3.2 Development of a Fire-Detecting Expert Support System 28 3.2.1 Construction of FDESS 29 3.2.2 The FDESS Interface Development 29 3.3 Experiment 37 3.3.1 Environment and Apparatus of Experiment 37 3.3.2 Subjects 39 3.3.3 Experimental Variables 40 3.3.4 Experimental Procedure 41 Chapter 4 Results and Discussions 42 4.1 Experimental Results 42 4.1.1 Training Time 43 4.1.2 Safety Inspection Time 43 4.1.3 Error Frequency 44 4.1.4 Test Scores 44 4.2 Discussions 45 Chapter 5 Conclusions 47 5.1 Contributions 47 5.2 Limitations of Experiment 47 5.3 Future Work 48 References 50 Appendix A 54 Appendix B 58 Appendix C 63

    Benyon, D. (2001). The new HCI? Navigation of information space. Knowledge-Based Systems, 14, 425-430.

    Brewster, S.A., & Cryer, P.G. (1999). Maximising Screen-Space on Mobile Computing Devices. Summary Proceedings of ACM CHI’99, pp. 224-225.

    Chiang, M.F. (2003).The Effect of Visual and Auditory Signals in FMCS on System Performance. Master thesis. Industrial Engineering and Engineering Management Department, National Tsing Hua University, Hsinchu, Taiwan.

    Christie, J., Raymond, M., & Watters, C. (2004). A comparison of simple hierarchy and grid metaphors for option layouts on small-size screens. International Journal of Human-Computer Studies. 60, 564-584.

    Christopher D., Sallie E., Yili L (2002). An Introduction to Human Factors Engineering. Pearson Education

    Cortes, U., Sanchez-Marre, M., Ceccaroni, L., R-Roda, I., & Poch, M. (2000). Artificial intelligence and environmental decision support systems. Applied Intelligence, 13, 225-239.

    Dillon, A., Richardson, J., & McKnifgt, C. (1999). The effect of display size and text splitting on reading lengthy text from the screen. Behavior and Information Technology, 9(3), 215-227.

    Duchnicky, R.L., & Kolers, P.A. (1983). Readability of text scrolled on visual display terminals as a function of window size. Human Factors, 25, 683-692.

    Foster, K.I. (1970). Visual perception of rapidly presented word sequences of varying complexity. Percept Psychophys, 8, 215-221.

    Gessler, S., & Kotulla, A. (1995). PDAs as mobile WWW browsers. Computer Networks and ISDN Systems, 28, 53-59.

    Guimaraes, T., Yoon, Y., & Clevenson, A. (1996). Factors important to expert systems success A field test. Information & Management, 119-130.

    Hernandez, J.Z., & Serrano, J.M. (2001). Knowledge-based models for emergency management systems. Expert Systems with Applications, 20, 173-186.

    Hillman, D. (1990). Integrating Neural Nets and Expert Systems. AI Expert, 5(6), 54-59.

    Holtzman, T.G. (1999). Computer-human interface solutions for emergency medical care. In Interactions, 6(3), 14-24.

    Jones C.C. (1981). Design Methods: seeds of Human Futures 2nd edition. London: Wiley

    Jones, M., Buchanan, G., & Thimbleby, H. (2003). Improving web search on small screen devices. Interacting with Computers, 15, 479-495.

    Jones, M., Marsden, G., Mohd-Nasir, N., Boone, K., & Buchanan, G. (1999). Improving Web interaction on small displays. Computer Networks, 31, 1129-1137.

    Jonsson, I.M., Nass, C., & Lee, K.M. (2004). Mixing personal computer and handheld interfaces and devices: effects on perceptions and attitudes. International Journal of Human-Computer Studies, 61, 71-83.

    Juola, J.F., Ward, N.J., & McNamara, T. (1982). Visual search and reading of rapid, serial presentations of letter strings, words and text. Exp Psychol: Gen 111, 208-227.

    Kamba, T., Elson, S., Harpold, T., & Piyawadee, N. (1996). Using small screen space more efficiently(pp. 383-390). Proceedings of the CHI’96: Conference on Human Factors in Computer Systems, April 13-18, 1996, Vancouver, BC, Canada: ACM.

    Kang, T. J., & Muter, P. (1989). Reading dynamically displayed text. Behavior & Information Technology, 8(1), 33-42.

    Kayis, B., & Charoenchai, N. (2004). Development of a Knowledge-Based System for Nonpowered Hand Tools (TOOL EXPERT): Part I- The Scientific Basis. Human Factors and Ergonomics in Manufacturing, 14(3), 257-268

    Kontogiannis, T., & Embrey, D. (1997). A user-centred design approach for introducing computer-based process information systems. Applied Ergonomics, 28, 109-119.

    Kristoffersen, S., & Ljungberg, F. (1999). Making place to make IT Work: empirical explorations of HCI for mobile CSCW. Proceedings of International Conference on Supporting Group Work (GROUP’99), pp. 276-285.

    Liebowitz, J. (1995). Expert systems: a short introduction. Engineering Fracture Mechanics, 50, 601-607.

    Mugeri, F., & Asenjo, J.A. (1992). An expert system for selection and synthesis of protein purification process. Frontiers in Bioprocessing II, eds P. Todd, S.K. Sikdar, M. Bier. American Chemical Society, pp. 367-373.

    Pascoe, J., Ryan, N., & Marse, D. (2000). Using while moving: HCI issues in fieldwork environments. ACM Transactions on Computer-Human Interaction (TOCHI), 7(3), 417-437.

    Qian, Y., Li, X., Jiang, Y., & Wen, Y. (2003). An expert system for real-time fault diagnosis of complex chemical processes. Expert System with Application, 24, 425-432.

    Rathnam, S., & Mannino, M.V. (1995). Tools for building the human-computer interface of a decision support system. Decision Support Systems, 13, 35-59.

    Ruiz, D., Canton, J., & Nougues, J.M. (2001). On-line fault diagnosis system support for reactive scheduling in multipurpose batch chemical plants. Computers and Chemical Engineering, 25, 829-837.

    Salvemini AV. (1998). Improving the human-computer interface: A human factors engineering approach. Human Factors in Computing, 15(5), 311-315.

    Schank, R.C. (1999). Where’s the AI. AI Magazine, Winter, pp. 38-49.

    Shim, J.P., Warkentin, M., James F., Daniel J., Sharda, R., & Carlsson, C. (2002). Past, present, and future of decision support technology. Decision Support Systems, 33, 111-126.

    Shneiderman, B. (1987). User interface design and evaluation for an electronic encyclopedia (pp. 207-223). In:Salvendy, G. (Ed.), Social, Ergonomic and Stress Aspects of Work with Computers. Elsevier, Amsterdam.

    Spence, R. (1999). A framework for navigation. International Journal of Human-Computer Studies, 51, 919-945.

    Tiritoglu, A., & Pleumis, J. (1995). Reading text presented on a small display. Applied Ergonomics, 26, 227-229.

    Watters, C., Duffy, J., & Duffy, K. (2004). Using large tables on small devices. International Journal of Human-Computer Studies, 60, 564-584.

    Webster, D.E. (1988). Mapping the design information representation terrain. IEEE Computer, 21(12), 8-23.

    Wojtek, M., Steven, R., Roman, S., & Szymon, W. (2003). Mobile clinical support system for pediatric emergencies. Decision Support Systems, 36, 161-176.

    York, J., & Pendharkar, P.C. (2004). Human-computer interaction for mobile computing in a variable work context. International Journal of Human-Computer Studies, 60, 771-797.

    Zografos, K.G., Vasilakis, G.M., & Giannouli, I.M. (2000). Methodological framework for developing decision support systems (DSS) for hazardous materials emergency response operations. Journal of Hazardous Materials, 71, 503-521.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE