簡易檢索 / 詳目顯示

研究生: 李讚虔
論文名稱: 1.由光合作用及形態探討墾丁海域食用松藻族群鋭減的原因 2.由形態觀察經高溫處理的小球藻程序化細胞死亡之過程
1.The causes of drastic decrease in algal group of Codium edule in Kenting by the photosynthetic and morphological approaches 2.The morphology of the programmed cell death on Chlorella pyrenoidosa after heat stress
指導教授: 徐邦達
口試委員:
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 生物資訊與結構生物研究所
Institute of Bioinformatics and Structural Biology
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 110
中文關鍵詞: 食用松藻小球藻熱逆境形態葉綠素螢光
外文關鍵詞: Codium edule, Chlorella, heat stress, morphology, chlorophyll fluorescence
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Part1
    在墾丁海域內,每年3-6月正是多數藻類的大量繁生期。根據觀察,在所有的大型藻類中,以匍匐生長的食用松藻覆蓋珊瑚礁的比例最高。但到了7-9月間,生長在亞潮帶5公尺以上的食用松藻覆蓋率即明顯下滑;過了11月之後,亞潮帶的食用松藻族群又慢慢回復,直到隔年3月才又開始大量繁生。到目前為止,尚無任何針對食用松藻在7-9月間其族群大量鋭減的原因進行探討。因此,本研究即對此一生態現象,由形態及生理方面著手,做一初步的研究。
    本實驗利用葉綠素螢光作為食用松藻在逆境之下其生理變化的指標;在形態觀察方面,則是利用電子顯微鏡觀察在環境逆境之下食用松藻細胞內部微細結構所發生的變化。我們發現到食用松藻在33℃下,其光合作用雖然會失去光週期性,但仍然能夠維持一個定值,整株藻體的外觀並沒有很明顯的變化,顯示出33℃對食用松藻的葉綠素螢光有影響,但並不足以造成細胞死亡。
    將溫度提升至35℃時整株藻體才會開始發生不可逆的傷害。在35℃之下,我們發現到在30分鐘之內食用松藻的光飽和點及電子傳遞速率明顯高於25℃環境下的食用松藻,顯示細胞的光合作用會在短時間內快速提升。經過3-5小時後,整個藻體結構已經產生不可逆的軟化現象。隨後出現的是葉綠素螢光快速地下降,而在8-10小時之後,葉綠素的螢光已經無法偵測到;另外根據形態觀察,我們也發現在35℃環境下4小時之後,細胞內的液泡已經開始縮小,並有許多小囊泡的產生,使得細胞逐漸失去支撐力而出現軟化,這應是決定細胞死亡的關鍵。到6小時之後,整個細胞發生了質離現象,細胞膜的結構也受到破壞,失去其完整性,顯示細胞已經出現了壞死的現象。
    綜合以上的發現,我們可以確定暴露在35℃的海水中,會使食用松藻的細胞結構造成不可逆的破壞,而液泡的瓦解是造成食用松藻死亡的主要原因。

    PartII
    本實驗是藉由穿透式電子顯微鏡來觀察同步化的Chlorella pyrenoidosa小細胞在經過46℃的熱處理後,置於連續光照的環境之下,細胞逐漸死亡的過程。
    在熱處理後的Chlorella細胞內首先發生的是染色質體濃縮並聚集在細胞核的周圍,顯示加熱對小球藻細胞產生的立即性影響。將經過加熱處理的小球藻置於光照環境下6小時後,小球藻因為葉綠素的分解而有明顯白化的現象,相對應於電顯切片的結果,雖然此時類囊膜結構都還很完整,膜並未受到破壞,但類囊膜間的顆粒狀結構已經消失。在光照的第8小時,我們已經看不到細胞內液泡、粒線體內膜及核仁的結構,而葉綠體的類囊膜結構也在這段時間由細胞內部開始向外部瓦解。顯示在光照第6~8小時之間是細胞形態發生變化的最大期,隨著這些胞器的消失,細胞質緊接著開始濃縮,由於細胞壁、細胞膜並未破裂,而導致質離現象的發生,而到光照第12小時達到最大數量,但質離現象會隨時間經過而逐漸變得不明顯;除此之外,染色質體仍然持續濃縮而形成一個空心環狀,此一現象可以維持一段相當長的時間。
    綜合以上的觀察,可以確定小球藻在經過高溫處理後置於連續光照的環境下培養,會導致細胞內部機制所引發的細胞死亡,並有其一定的死亡過程,有別於因細胞膜破裂引起的細胞壞死。


    PartI
    The growth period for many macroalgae in Ken Ting is from March to June. According to preview studies, Codium edule has the largest covering ratio on the coral reef among all the macroalgae, but its population above 5m depth of subtidal drastically decreases from July to September. After November C. edule gradually recover and rapid growth state until March next year. In this article, we use the chlorophyll fluorescence and transmission electrons microscopic(TEM) to find out the possible reasons for C. edule drastically decrease between July to September.
    According to chlorophyll fluorescence studies, we found that C. edule lost photosynthetic circadian rhythm at 33℃, but it was not lethal at the temperature. Upon exposure to 35℃, the photosynthetic activity of the algae would drastically decrease after 4 hours and drop to zero after 8 hours. From TEM studies, the vacuoles reduce in size which was accompanied by the appearance of many small vesicles after exposing to 35℃ about 4 hours. In the meantime, the algae became soft and underwent plasmolysis that is believed a key induced cell death. Finally, the vacuole collapsed completely and the plasmamembrane destroyed which means the algal cells started to necroses.
    In summery, our data suggested that 35℃ would cause the vacuole to collapse and lead to C. edule is cell death. This might be for the reason it drastically decrease between July to September.

    PartII
    In this study, we examined the programmed cell death (PCD)of synchronous Chlorella pyrenoidosa culture by transmission electron microscopic(TEM). The PCD started right affect high temperature stress(46.5℃)followed by continuous illumination under normal culture condition.
    We noticed that high temperature stress induced chromatin condensation around the inner membrane of nuclear and something in vacuole. These phenomena elucidated the immediate effect on Chlorella brought about by heat stress. In 6 h after stress we found that Chlorella cell were bleached. But according to the images of TEM, the destruction of the thylakoids started at 8 h but not at 6 h. The direction of thylakoid destruction was from inner to outer side of Chlorella cells. At the same time, the structures of vacuole, mitochondria and nuclei in Chlorella also disappeared. These showed that there were dramatic morphological changes in Chlorella between 6-8h. The disappearances of organells were followed by and then the cytosolic condensation which in turn induced plasmolysis, but the later phenomenon would vanished gradually. In addition, the chromatins condensation formed an annular structure that was preserved for more than two days.
    In summery, Chlorella would die after heat treatment. The death was induced by a spontaneous mechanism and a programmed process different from ordinary.

    Part I 摘要 ……………………………………………… 1 前言 ……………………………………………… 5 材料與方法 ……………………………………… 17 結果 ……………………………………………… 20 討論 ……………………………………………… 31 圖表 ……………………………………………… 40 參考文獻 ………………………………………… 74 縮寫表 …………………………………………… 77 Part Ⅱ 摘要 ……………………………………………… 78 前言 ……………………………………………… 81 材料與方法 ……………………………………… 85 結果 ……………………………………………… 88 討論 ……………………………………………… 93 圖表 ……………………………………………… 97 參考文獻 …………………………………………107 附表 ………………………………………………110

    Part I
    蔡娟娟 (2000) 營養鹽與溫度對墾丁南灣大型海藻生物量之影響

    Allen J. F., Forsberg J. (2001) Molecular recognition in thylakoid structure and function. Trends in plant science 6(7):317-326

    Allen J. F. (2003) Cyclic, pseudocyclic and noncyclic photophosphorylation: new links in the chain. Trends in plant science 8 (1): 15-19

    Bellwood D. R., Hughes T. P., Folke C. (2004) Confronting the coral reef crisis. Nature 429: 827-833

    Booij-James I. S., Swegle W. M., Edelman M.,Mattoo A. K. (2002) Phosphorylation of the D1 photosystem II reaction center protein is controlled by an endogenous circadian rhythm. Plant physiology 130 (4): 2069-2075

    Brooks A. & Farquhar G.D. (1985) Effects of temperature on the O2/CO2 specificity of ribulose-1,5-bisphosphate carboxylase/oxygenase and the rate of respiration in the light. Estimates from gas exchange measurements on spinach. Planta 165: 397–406

    Chang J. S., Dai C. F., Chang J. (2002) A taxonomic karyological study of the Codium geppiorum complex (Chlorophyta) in southern Taiwan, including the description of Codium nanwanense sp. nov. Botanical bulletin of academia sinica 43:161-170

    Crafts-Brandner S. J., Salvucci M. E. (2000) Rubisco activase constrains the photosynthetic potential of leaves at high temperature and CO2. Proceedings of the national academy of sciences of the United States of America 97: 13430-13435

    Croft D. R., Coleman M. L., Li S., Robertson D., Sullivan T., Stewart C. L., Olson M. F. (2005) Actin-myosin–based contraction is responsible for apoptotic nuclear disintegration. Journal of cell biology 168: 245-255.

    Häder Donat-P., Porst M., Lebert M. (2000) On site photosynthetic performance of Atlantic green alga. Journal of photochemistry and photobiology: B 57:159-168

    Hall D. O., Rao K. K. (1999) Photosynthesis, 6th edn., pp.103-107. Cambridge University Press, Cambridge.

    Havaux M. (1993) Characterization of thermal damage to the photosynthetic electron transport system in potato leaves. Plant science 94:19-33

    Havaux M. (1996) Short-term responses of photosystem I to heat stress – induction of a PS II-independent electron transport through PS I fed by stromal components. Photosynthesis Research 47: 85–97

    Hideg E., Murata N. (1997) The irreversible photoinhibition of the photosystem II complex in leaves of Vicia faba under strong light. Plant science 130:151-158

    Hughes T. P. (1994)Catastrophes, phase-shift and large scale degradation of a Caribbean coral reef. Science 265: 1547-1551

    Lazár D. (1999) Chlorophyll a fluorescence induction. Biochimica et biophysica acta-bioenergetics 1412: 1-28

    Melis A. (1999) Photosystem-II damage and repair cycle in chloroplasts: what modulates the rate of photodamage in vivo? Trends in plant science 4(4):130-135

    Müller P., Li X. P., and Niyogi K. K. (2001) Non-photochemical quenching. A response to excess light energy. Plant physiology 125: 1558-1566

    Ogren W. L. (1984) Photorespiration pathways, regulation, and modification. Annual review of plant physiology 35:415–442

    Rintamaki E, Kettunen R, Aro EM (1996) Differential D1 dephosphorylation in functional and photodamaged photosystem II centers - Dephosphorylation is a prerequisite for degradation of damaged D1. Journal of biological chemistry 271:14870-14875

    Rohácek K., Barták M. (1999) Technique of the modulated chlorophyll fluorescence:basic concept, useful parameters, and some applications. Phtosynthetica 37(3): 339-363

    Silva P. C. (1952) Codium Stackhouse. In L. E. Egerod (ed.), An Analysis of the Siphonous Chlorophycophyta with Special Reference to the Siphonocladales, Siphonales, and Dasycladales of Hawaii. Univ. Calif. Pub. Bot. 25:381-395

    Weis E. (1980) Reversible heat-inactivation of the Calvin cycle: a possible mechanism of the temperature regulation of photosynthesis. Planta 151: 33–39

    PartII
    Adams J. M., Cory S. (1998) The Bcl-2 protein family: arbiters of cell survival. Science 281,1322–1326

    Antonsson B., Martinou J. C. (2000) The Bcl-2 protein family. Experimental cell research 256:50–57

    Berman-Frank I., Bidle K. D., Haramaty L., Falkowski P. G. (2004) The demise of the marine cyanobacterium, Trichodesmium spp., via an autocatalyzed cell death pathway. Limnology and oceanography 49: 997-1005

    Bidle K. D., Falkowski P. G. (2004) Cell death in planktonic, photosynthetic microorganisms. Nature reviews microbiology 2:643-665

    Chen P. C., Lai C. L. (1996) Physiological adaptation during cell dehydration and rewetting of a newly-isolated Chlorella species. Physiologia plantarum 96:453-457

    Cikala M., Wilm B., Hobmayer E. (1999) Identification of caspases and apoptosis in the simple metazoan Hydra. Current biology 9:959-962

    Croft D. R., Coleman M. L., Li S., Robertson D., Sullivan T., Stewart C. L., Olson M. F. (2005) Actin-myosin–based contraction is responsible for apoptotic nuclear disintegration. Journal of cell biology 168: 245-255.

    Du C., Fang M., Li Y., Li L., Wang X. (2000) Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102:33–42

    Fukuda H. (1997) Programmed cell death during vascular system formation. Call death and differentiation 4:684-688

    Gordeeva A .V., Labas Y. A., Zvyagilskaya R. A. (2004) Apoptosis in unicellular organisms:Mechanisms and evolution. Biochemistry (Moscow) 69(10):1301-1313

    Gross A. et al. (1999) Caspase cleaved BID targets mitochondria and is required for cytochrome c release, while BCL-XL prevents this release but not tumor necrosis factor-R1/Fas death. Journal of biological chemistry 274:1156–1163

    Hengartner M. O. (2000) The biochemistry of apoptosis. Nature 407:770-776

    Hideo K., Hiroo F. (2002) Developmental programmed cell death in plant. Current biology 5:568-573

    Hoeberichts F. A., Woltering E. J. (2002) Multiple mediators of plant programmed cell death: interplay of conserved cell death mechanisms and plant-specific regulator. BioEssays 25:47-57

    Irmler, M. et al. (1997) Inhibition of death receptor signals by cellular FLIP. Nature 388:190–195

    Koonin E. V., Aravind L. (2002) Origin and evolution of eukaryotic apoptosis: the bacterial connection. Cell death and differenation 9:394-404

    Krishnamurthy K. V., Krishnaraj R., Chozhavaendan R. (2000) The programme of cell death in plant and animals-A comparison. Current science 79:1169-1181

    Lam E, Kato N., Lawton M. (2001) Programmed cell death, mitochondria and the plant hypersensitive response. Nature 411:848-853

    Leu K.L., Hsu B.D. (2004) A programmed cell disintegration of Chlorella after heat stress. Plant science 168:145–152

    Li P., Nijhawan D., Budihardjo I., Srinivasula S. M., Ahmad M., Alnemri E. S.,Wang X. (1997) Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91: 479-489

    Li H., Zhu H., Xu C. J., Yuan J. (1998) Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94:491–501

    Segovia M., Haramaty L., Berges J. A., Falkowski P. G. (2003) Cell death in the Unicellular Chlorophyte Dunaliella tertiolecta. A hypothesis on the evolution of apoptosis in higher plants and metazoans. Plant physiology 132:99–105

    Muzio M., Stockwell B. R., Stennicke H. R., Salvesen G. S., Dixit V. M. (1998) An induced proximity model for caspase-8 activation. Journal of biological chemistry 273:2926-2930

    Puthalakath H., Huang D. C., O’Reilly L. A., King S. M., Strasser A. (1999) The proapoptotic activity of the Bcl-2 family member Bim is regulated by interaction with the dynein motor complex. Molecular cell 3: 287–296

    Tzeng S. and Hsu B.D. (2001) Chlorophyll degradation in heat-treated Chlorella pyrenoidosa. A flow cytometric study. Australian journal of plant physiology 28:79-83

    Verhagen A. M. et al. (2000) Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 102:43–53

    Wolter K. G. et al. (1997) Movement of Bax from the cytosol to mitochondria during apoptosis. Journal of cell biology 139:1281–1292

    Wyllie A. H. (2000) Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature 284:555-556

    Zou H., Henzel W. J., Liu X. S., Lutschg A., Wang X. (1997) Apaf-1, a human protein homologous to C-elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 90 (3): 405-413

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE