簡易檢索 / 詳目顯示

研究生: 林孜育
Lin, Tzu-Yu
論文名稱: 微磁致動器之開發及其整合電容感測之設計與應用
The implementation of magnetic microactuator and its integration with capacitive sensing unit design
指導教授: 方維倫
Fang, Weileun
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 奈米工程與微系統研究所
Institute of NanoEngineering and MicroSystems
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 91
中文關鍵詞: 微機電系統勞倫茲力電磁力磁致動器
外文關鍵詞: MEMS, electromagnetic force, Lorentz force, magnetic actuator
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用微機電技術設計與製造一磁致動器,運用線圈繞線可產生勞倫茲力與電磁力兩種磁致動方式,其具有能同時產生兩相反方向的作用力,及致動力與振幅值優於靜電力之優點。並設計梳狀式電極與平行板式電極之兩種電容感測機制於結構上,期望元件可應用於微陀螺儀與微羅盤之目的。針對兩種磁力與兩種電容感測方式組合有四種不同結構,並有其應用目標。本文針對應用目的上對結構尺寸做設計與模態分析,與量測結果互相比較討論;設計有兩種磁力繞線方式,以理論推導線圈可產生的力矩量值,並比較不同的繞線方式對力矩的影響,再與實驗量測結果互相驗證。針對元件的應用目的作模擬分析,並推導可能產生的電容改變量值。


    第一章 緒論 1 1-1 前言 1 1-2 文獻回顧 2 1-2-1靜電致動 2 1-2-2 熱致動 3 1-2-3 磁致動 4 1-2-4 磁致動結合電容感測應用 6 1-3 研究動機與目標 8 第二章 元件設計與理論分析 16 2-1 操作原理 17 2-2 內環結構設計與模態分析結合電容感測 21 2-3 外環結構設計結合電容感測機制 23 2-3-1 梳狀式電容感測與外環結構 24 2-3-2 平行板式電容感測與外環結構 26 第三章 磁力驅動與模擬設計 37 3-1 磁力驅動機制 37 3-1-1 勞倫茲力(Lorentz force) 38 3-1-2 電磁力(electromagnetic force) 39 3-2 磁力矩之模擬與討論 41 3-3 電容變化之理論推算 42 3-3-1 微陀螺儀應用之理論估計 43 3-3-2 微羅盤應用之理論估計 45 第四章 製程設計與討論 58 4-1 製作流程設計 58 4-2 製程結果與問題討論 60 4-2-1 製程結果 60 4-2-2 製程問題討論 61 4-3 元件量測與討論 62 4-3-1 實驗裝置 62 4-3-2 模態量測 63 4-3-3 磁力驅動 64 4-4 應用之電容估算 64 第五章 結論 77 5-1 研究成果 77 5-2 未來工作 78

    [1] K. E. Petersen, “Dynamic Micromechanics on Silicon: Techniques and Devices,” IEEE Transactions on Electron Devices, vol. 25, no. 10, pp.1241-1250, 1978.
    [2] K. E. Petersen, “Micromechanical Membrane Switches on Silicon,” IBM Journal of Research and Development, vol. 23, no. 4, pp.376-385, 1979.
    [3] K. E. Petersen, “Silicon Torsional Scanning Mirror,” IBM J. Res. Develop., vol. 24, no.5, pp. 631-637, 1980.
    [4] L.-S. Fan, Y.-C. Tai, and R. S. Muller, “IC-processed Electrostatic Micromotors,” Sensors and Actuators, vol. 20 (1-2), pp. 41-47, 1989.
    [5] T. Akiyama and K. Shono, “Controlled Stepwise Motion in Polysilicon Microstructures,” Journal of Microelectromechanical Systems, vol. 2, no.3, pp.106-110, 1993.
    [6] W. C. Tang, T.-C. H. Nguyen, and R. T. Howe, “Laterally Driven Polysilicon Resonant Microstructures,” IEEE MEMS’89, Salt Lake City, UT, 1989, pp. 53-59.
    [7] J. Hsieh, C.-C. Chu, and W. Fang, “On the Driving Mechanism Design for Large Amplitude Electrostatic Actuation,” ASME Proceedings of the 2001 International Mechanical Engineering Congress and Exhibition (IMECE) , New York, NY, USA, 2001.
    [8] J. Hsieh, C. C. Chu, J. M. Tsai, and W. Fang, “Using Extended BELST Process in Fabricating Vertical Comb Actuator for Optical Application,” IEEE Optical MEMS, Lugano, Switzerland, 2002.
    [9] W. Riethmuller, and W. Benecke, “Thermally Excited Silicon Microactuators,” IEEE Transactions on Electron Device, vol. 35, no. 6, pp. 758-763, 1988.
    [10] W. Benecke, and W. Riethmuller, “Applications of Silicon-microactuators Based on Bimorph Structures,” IEEE MEMS’89, Salt Lake City, UT, 1989, pp.116-120.
    [11] L. Que, J. -S. Park, and Y. B. Gianchandani, ”Bent-beam Electro-thermal Actuators for High Force Applications,” IEEE MEMS’99, Orlando, FL, 1999, pp.31-36.
    [12] J. H. Comtois, V. M. Bright, and M. W. Phipps, “Thermal Microactuators for Surface-micromachining Processes,” Proceedings of SPIE, vol. 2642, Austin, TX, 1995, pp.10-21.
    [13] J. H. Comtois, and V. M. Bright, “Applications for Surface- micromachined Polysilicon Thermal Actuators and Arrays,” Sensors and Actuators A, vol. 58, pp. 19-25, 1997.
    [14] W.-C. Chen, C.-C. Chu, J. Hsieh, and W. Fang, “A Reliable Single-layer Out-of-plane Micromachined Thermal Actuator,” Sensors and Actuators A, vol. 103, pp. 48-58, 2003.
    [15] O. Cugat, J. Delamare, and G. Reyne, “Microactionneurs electromagnétiques—MAGMAS”. Paris, France, Hermès- Science/Lavoisier, 2002.
    [16] O. Cugat, J. Delamare, and G. Reyne,” Magnetic Micro-Actuators and Systems (MAGMAS)”, IEEE Transactions on magnetics, vol. 39, no. 5, pp. 3607-3612, 2003.
    [17] D. Niarchos, “Magnetic MEMS: key issues and some applictions”, Sensors and Actuators A, vol 109, pp. 166–173, 2003.
    [18] H. J. Cho, “A biodrictional magnetic microactuator using electroplated permanent magnet arrays”, Journal of Microelectromechanical. Systems, vol. 11, 78-84, 2002.
    [19] G. D. Gray, “magnetically bistable actuator Part 1 ultra-low switching energy and modeling”, Sensors and Actuators A, vol 119 489–501, 2005.
    [20] T. Bourouina, “integration of two degree-of-freedom magnetostrictive actuation and piezoresistive detection: application to a two-dimensional optical scanner ”, Journal of Microelectromechanical. Systems, vol. 11, 355-361, 2002.
    [21] B. Wagner, and W. Benecke,” Microfabricated actuator with moving permanent magnet,” Micro Electro Mechanical systems, January, pp.27-32, 1991.
    [22] S. Bhansali, A. L. Zhang, and R. B. Zmood, P. E. Jones, and D. K. Sood,” Prototype Feedback-Controlled Bidirectional Actuation System for MEMS Applications,” Journal of Microelectromechanical Systems, pp. 245-251, 2005.
    [23] D. Paci, F. Pieri , P. Toscano, and A. Nannini, “A CMOS-compatible, magnetically actuated resonator for mass sensing applications”, Sensors and Actuators B, vol 129 10-17, 2007.
    [24] H.-A. Yang, T.-L. Tang, S. T. Lee, and W. Fang “a novel coilless scanning mirror using eddy current Lorentz force and magnetostatic force”, Journal of Microelectro- mechanical Systems, vol. 16, pp. 511-520, 2007
    [25] A. M. Shkel, “Type I and Type II Micromachined Vibratory Gyroscope ”, Proceedings of the 2006 IEEE/ION PLANS, San Diego, CA, April, 2006, pp. 586- 593,
    [26] J. Bernstein, S. Cho, A. T. King, A. Kourepenis, P. Maciel, and M. Weinberg, “A micromachined comb-drive tuning fork rate gyroscope” Micro Electro Mechanical Systems, MEMS ‘93 , Ft. Lauderdale, FL, February, 1993, pp. 143–148.
    [27] A. Sharma, F.M. Zaman, B.V. Amini, and F. Ayazi, “A high-Q in-plane SOI tuning fork gyroscope”, Sensors, 2004. Proceedings of IEEE, November 2004, vol. 1, pp.467–470.
    [28] J. A. Geen, S. J. Sherman, J. F. Chang, and S. R. Lewis, “Single-chipsurface micromachined integrated gyroscope with 50°/h allan deviation”, IEEE Journal of Solid-State Circuits , vol. 37, pp.1860–1866, 2002.
    [29] P. Greiff, B. Boxenhom, T. King, and L. Niles, “Silicon monolithicmicromechanical gyroscope”, Solid-State Sensors and Actuators, Transducer’91 , 1991, pp. 966–968.
    [30] S. E. Alper1 and T. Akin, “A planar gyroscope using astandard surface micromachining process”, 14th European Conference on Solid-State Transducers, Copenhagen, Denmark, August, 2000, pp. 387–390.
    [31] K. Maenaka, S. Ioku, N. Sawai, T. Fujita, and Y. Takayama, “Design, fabricationand operation of MEMS gimbal gyroscope”, Sensors and Actuators A, vol.121 6–15, 2005.
    [32] M. W. Putty and K. Hajafi, “A micromachined vibratingring gyroscope”, Micro Electro Mechanical Systems, MEMS‘94, Proceedings of IEEE, Hilton Head, SC, USA, 1994, pp 213–220.
    [33] T. Juneau, A. P. Pisano, and J. Smith, “Dual axis operation of a micromachined rate gyroscope”, Solid State Sensors Actuators, vol. 2, pp.883–886, 1997
    [34] Y. Watanabe, T. Mitsui, T. Mineta,Y. Matsu, and K. Okada, “SOI micromachined 5-axis motion sensor using resonantelectrostatic drive and non-resonant capacitive detectionmode”, Sensors and Actuators A, vol 130–131, pp. 116–123, 2006.
    [35] M. Lutz, W. Golderer", J. Gerstenmeier, J. Marek, B. Maihofer, S. Mahler, H. Munzel and U. Bischof, “A precision yaw rate sensor in silicon micromachining”, Digest, Transducers '97, Chicago, June, 1997, pp. 16-19.
    [36] T. M. Liakopoulos, and C. H. Ahn, “A micro-fluxgate magnetic sensor using micromachined planar solenoid coils”, Sensor and Actuators A ,vol. 77, pp. 66-72, 1999
    [37] A. Baschirotto, E. Dallago, M. Ferri , P. Malcovati, A. Rossini , and G. Venchi, “A 2D micro-fluxgate earth magnetic field measurement systems with fully automated acquisition setup”, Measurement, vol. 43, pp. 46-53,2010
    [38] J. Kyynarainen , J. Saarilahti , H. Kattelus , A. Karkkainen ,T. Meinander, A. Oja, P. Pekko, H. Seppa, M. Suhonen ,H. Kuisma, S. Ruotsalainen, and M. Tilli, “A 3D micromechanical compass”, Sensors and Actuators A ,vol. 142 , pp. 561-568, 2008
    [39] A.C. Hartleya, R.E. Miles, J. Corda and N. Dimitrakopoulos, “Large throw magnetic microactuator,” Mechatronics, vol. 18, pp.459-465, 2008.
    [40] ANSYS, Inc., http://www.ansys.com/
    [41] K. Maenaka, T. Fujita, Y. Konishi, and M. Maeda, “Analysis of a high sensitive silicon gyroscope with cantilever beam as vibrating mass”, Sensors and Actuators A , vol. 54, pp.568–573, 1996.
    [42] H. Urey, “MEMS scanning for display and imaging applications”, Proceedings of SPIE, vol. 5604, Bellingham, WA, 2004, pp. 218-229.
    [43] A. D. Yalcinkaya, Hakan Urey, Dean Brown, Tom Montague, and Randy Sprague, “Two-Axis Electromagnetic Microscanner for High Resolution Displays”, Journal of Microelectromechanical Systems, vol. 15, no. 4, 2006.
    [44] A. D. Yalcinkaya, Hakan Urey, and Sven Holmstrom, “NiFe Plated Biaxial MEMS Scanner for 2-D Imaging”, Photonics Technology Letters, vol. 19, pp. 330-332, 2007.
    [45] N. J. Groom, “Design considerations for an air core magnetic actuator”, NASA STI/Recon Technical Report N, 104229, 1992.
    [46] J. Sutanto , A.D. Papania 1, Y.H. Berthelot 1, and P.J. Hesketh, “Dynamic characteristics of membrane displacement of a bidirectional electromagnetic microactuator with microcoil fabricated on a single wafer”, Microelectronic Engineering, vol. 82, pp. 12-27, 2005.
    [47] Ansoft, Inc., http://www.ansoft.com
    [48] C.-M. Sun, C. W. Wang, and W. Fang, “On the sensitivity improvement of CMOS capacitive accelerometer”, Sensors and Actuators A, vol. 141, pp.347–352, 2008.
    [49] M. C. Wu, H.-Y. Lin, and W. Fang, “Design of Novel Sequential Engagement Vertical Comb Electrodes for Analog Micromirror”, Photonics Technology Letters, vol. 19, pp 1586-1588, 2007.
    [50] C. H. Ko, J. J. Yang, J. C. Chiou, S. C. Chen, and T. H. Kao, “Magnetic Analysis of A Micromachined Magnetic Actuator Using the Finite Element Method”, SPIE vol. 3893, pp.127-136, 1999.
    [51] A. I. Beyzavi and N.-T. Nguyen, “Modeling and optimization of planar microcoils”, Journal of Micromechanical Microengerring, vol. 18, 095018 (8pp), 2008.
    [52] M. Bensetti, Y. Le Bihan, and C. Marchand, “Development of an hybrid 3D FEM for the modeling of micro-coil sensors and actuators”, Sensors and Actuators A, vol. 129, pp.207–211, 2005.
    [53] A. Santra, N. Chakraborty, and R. Ganguly, “Analytical evaluation of magnetic field by planar micro-electromagnet spirals for MEMS applications”, Journal of Micromechanical Microengerring, vol. 19, 085018 (10pp), 2009.
    [54] D. de Bhail´ıs , C. Murraya, M. Duffy, J. Alderman, G. Kelly, and S.C. O´ Mathu´na, “Modelling and analysis of a magnetic microactuator”, Sensors and Actuators A, vol. 81, pp. 285–289

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE