簡易檢索 / 詳目顯示

研究生: 李郁君
Li, Yu-Chun
論文名稱: 發展溫度敏感性產氣式抗癌微脂體
Development of a thermo-sensitive bubble-generating liposomal system for anti-cancer therapy
指導教授: 宋信文
口試委員: 甘霈
梁祥發
麋福龍
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 38
中文關鍵詞: 微脂體溫度敏感性
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 癌症於臨床上的主流治療方法可分為三種,分別是手術切除、放射線治療以及化學治療。當癌細胞還未擴散時,直接經由手術切除腫瘤部位或使用高能量的放射線毒殺癌細胞,都有良好的治療效果;而當癌症擴散後,則需進行全身性化學治療,將抗癌藥物經由口服或靜脈注射投藥,使藥物經由血液循環到達癌症部位,進行毒殺癌細胞作用。於臨床上常見的抗癌藥物像是阿黴素(Doxorubicin),俗稱小紅莓,因為它對於多種癌症皆有治療效果所以被廣泛使用,但其所伴隨的嚴重副作用則是會造成心臟衰竭。為了解決上述所遭遇到的問題,許多團隊研發將Doxorubicin包覆於微脂體內部,降低對心臟的傷害,像是市售藥物Doxil®或是ThermoDox®,但是Doxil®的藥物釋放速率慢,藥物無法有效的被釋放出來;而ThermoDox®雖然可以藉由局部升溫刺激微脂體有效釋放藥物,但在血液循環中無法保持穩定。為了進一步克服市售藥物所面臨到的問題,本研究提出利用微脂體包覆具有溫度敏感性的碳酸氫銨(ammonium bicarbonate)與抗癌藥物Doxorubicin,於37℃下保持穩定,但是在局部升溫至42℃時,包覆於微脂體內的碳酸氫銨遇熱會迅速分解成氨、水以及二氧化碳氣體,此時產生的二氧化碳氣體會干擾微脂體脂質雙層的穩定性,使包覆於微脂體內的藥物快速釋放出來,達到毒殺癌細胞之效用。碳酸氫銨也可藉由主動載藥法(remote-loading)將Doxorubicin包覆在微脂體的親水核心,由實驗結果可以得知,其Doxorubicin包覆率可達到93.8%。因此,本實驗開發的藥物載體不僅可穩定包覆藥物,並且在局部升溫時,包覆於微脂體內部的碳酸氫銨會快速分解產生二氧化碳干擾微脂體穩定性,利於藥物釋放達到治療效果。


    目錄 摘要 I 誌謝 II 圖目錄 V 表目錄 VII 第一章 緒論 1 1-1 微脂體介紹 1 1-2 以微脂體當作藥物載體 3 1-3小紅莓 (Doxorubicin) 8 1-4碳酸氫銨 (Ammonium bicarbonate) 9 第二章 實驗規劃與設計 10 2-1研究動機與目的 10 2-2實驗規劃流程圖 13 第三章 微脂體的物性研究 14 3-1實驗儀器 14 3-2實驗製程與方法 15 3-2-1微脂體製備 15 3-2-2碳酸氫銨中碳酸氫根含量測定 16 3-2-3微脂體包覆Doxorubicin的製備 16 3-2-4微脂體的粒徑大小和帶電量 17 3-2-5 藉由超音波影像儀測試碳酸氫銨微脂體產氣能力 17 3-2-6 微脂體釋放藥物的機制 17 3-2-7 微脂體包覆Doxorubicin的體外釋放 17 3-3結果與討論 18 3-3-1 由包覆藥物效率來決定微脂體的脂質組成成份 18 3-3-2碳酸氫銨滴定 20 3-3-3微脂體的粒徑大小和帶電量 22 3-2-4藉由超音波影像儀測試碳酸氫銨微脂體產氣能力 23 3-3-4溫度對於微脂體粒徑大小的影響 23 3-3-6微脂體釋放藥物的機制 24 3-3-6微脂體包覆Doxorubicin的體外釋放 25 3-3-6結論 27 第四章 細胞實驗 28 4-1實驗製程與方法 28 4-1-1 細胞培養 28 4-1-2 微脂體進入細胞的途徑 28 4-1-3 Doxorubicin在細胞內的累積 29 4-1-4 細胞活性測試 29 4-2結果與討論 30 4-2-1微脂體進入細胞的途徑 30 4-2-2細胞內Doxorubicin的累積 31 4-2-3共軛焦顯微鏡定性Doxorubicin在細胞內的累積 33 4-2-4 細胞活性測試 34 4-3總結 36 參考文獻 37   圖目錄 圖1-1 微脂體同時具有親水中心跟疏水脂質雙層 1 圖1-2 微脂體上加上細胞膜蛋白對於調控藥物的影響[2] 2 圖1-3 微脂體依粒徑大小可分為三種類型[4] 3 圖1-4 藥物載體到達腫瘤細胞釋放藥物須經過層層關卡[7] 4 圖1-5 微脂體表面加上PEG修飾可保護微脂體免於被RES系統辨認清除[8] 5 圖1-6 刺激藥物釋放分類[9] 6 圖1-7 利用具有光敏感性的脂質(DC8,9PC)所形成的微脂體[11] 7 圖1-8 PEG與微脂體之間的鍵結可以被酸切斷[12] 8 圖1-9 Doxorubicin化學結構式[13] 9 圖2-1-1 Doxil® 微脂體脂質組成成份 11 圖2-1-2 ThermoDox® 微脂體釋放原理與脂質組成成份 12 圖2-1-3 微脂體中包覆碳酸氫銨與Doxorubicin,並升溫至42℃,造成微脂體內部產生氣泡 13 圖2-1-4實驗規劃流程圖 13 圖3-2-1利用薄膜水合法製備微脂體流程圖 15 圖3-2-2滴定碳酸氫根流程圖 16 圖3-3-2 不同微脂體組成的藥物包覆效率 20 圖3-3-3 不同碳酸氫根含量製備而成的微脂體藥物包覆效率 22 圖3-3-4 微脂體在不同溫度下的超音波影像 23 圖3-3-5微脂體粒徑大小與溫度之間的關係 24 圖3-3-6微脂體在共軛焦顯微鏡下於42℃作用隨時間增加而改變的情形 25 圖3-3-7 包覆不同濃度碳酸氫根的微脂體在37℃和42℃下Doxorubicin的釋放情形 27 圖4-2-1 帶有螢光(DiO)的微脂體對細胞餵食2小時後於流氏細胞儀分析細胞中的螢光強度 30 圖4-2-2帶有螢光(DiO)的微脂體對細胞餵食2小時後於共軛焦顯微鏡下觀察細胞中的螢光表現情形 31 圖4-2-3 包覆Doxorubicin微脂體對細胞於不同溫度下作用不同時間,使用流式細胞儀分析Doxorubicin於細胞中的累積的平均螢光強度之量化 32 圖4-2-4 共軛焦顯微鏡下Doxorubicin累積在細胞核內隨加熱時間增加的變化 33 圖4-2-5 微脂體包覆Doxorubicin在37℃和42℃下作用不同時間對細胞存活率的影響(Doxorubicin 濃度為20 μM) 35 表目錄 表 1飽和碳酸氫銨水溶液中的碳酸氫根含量滴定 21 表 2微脂體的粒徑大小與表面電位 22

    參考文獻
    [1] Dickson D. UK scientists test liposome gene therapy technique. Nature 1993;365:1-4.
    [2] Fomina N, Sankaranarayanan J, Almutairi A. Photochemical mechanisms of light-triggered release from nanocarriers. Adv Drug Deliv Rev 2012;64:1005-20.
    [3] Riaz M. Liposomes preparation methods. Pak J Pharm Sci 1996;19:65-77.
    [4] Yang F, Jin C, Jiang Y, Li J, Di Y, Ni Q, et al. Liposome based delivery systems in pancreatic cancer treatment: from bench to bedside. Cancer Treat Rev 2011;37:633-42.
    [5] Mufamadi MS, Pillay V, Choonara YE, Toit LCD, GirishModi, Naidoo D, et al. A Review on Composite Liposomal Technologies for Specialized Drug Delivery. Drug Deliv 2011;2011:1-19.
    [6] Andresen TL, Jensen SS, Jørgensen K. Advanced strategies in liposomal cancer therapy: problems and prospects of active and tumor specific drug release. Prog Lipid Res 2005;44:68-97.
    [7] Huang L, Liu Y. In vivo delivery of RNAi with lipid-based nanoparticles. Annu Rev Biomed Eng 2011;13:507-30.
    [8] Oku N. Anticancer therapy using glucuronate modified long-circulating liposomes. Adv Drug Deliv Rev 1999;40:63-73.
    [9] Loomis K, McNeeley K, Bellamkonda RV. Nanoparticles with targeting, triggered release, and imaging functionality for cancer applications. Soft Matter 2011;7:839-56.
    [10] Fleige E, Quadir MA, Haag R. Stimuli-responsive polymeric nanocarriers for the controlled transport of active compounds: Concepts and applications. Adv Drug Deliv Rev 2012;64:866-84.
    [11] Yavlovich A, Singh A, Tarasov S, Capala J, Blumenthal R, Puri A. Design of liposomes containing photopolymerizable phospholipids for triggered release of contents. J Therm Anal Calorim 2009;98:97-104.
    [12] Shim MS, Kwon YJ. Stimuli-responsive polymers and nanomaterials for gene delivery and imaging applications. Adv Drug Deliv Rev 2012;64:1046-59.
    [13] Zhang Y, Xiang J, Liu Y, Zhang X, Tang Y. Constructing transferrin receptor targeted drug delivery system by using doxorubicin hydrochloride and vanadocene dichloride. Bioorg Med Chem Lett 2011;21:5982-6.
    [14] Barenholz YC. Doxil® — The first FDA-approved nano-drug: Lessons learned. J Control Release 2012;160:117-34.
    [15] Chiu GNC, Abraham SA, Ickenstein LM, Ng R, Karlsson G, Edwards K, et al. Encapsulation of doxorubicin into thermosensitive liposomes via complexation with the transition metal manganese. J Control Release 2005;104:271-288.
    [16] Banno B, Ickenstein LM, Chiu GNC, Bally MB, Thewalt J, Brief E, et al. The functional roles of poly(ethylene glycol)-lipid and lysolipid in the drug retention and release from lysolipid-containing thermosensitive liposomes in vitro and in vivo. J Pharm Sci 2009;99:2295-308.
    [17] Semple SC, Chonn A, Cullis PR. Interactions of liposomes and lipid-based carrier systems with blood proteins: Relation to clearance behaviour in vivo. Adv Drug Deliv Rev 1998;32:3-17.
    [18] Mills JK, Needham D. Lysolipid incorporation in dipalmitoylphosphatidylcholine bilayer membranes enhances the ion permeability and drug release rates at the membrane phase transition. Biochim Biophys Acta 2005;1716:77-96.
    [19] Samali A, Holmberg CI, Sistonen L, Orrenius S. Thermotolerance and cell death are distinct cellular responses to stress: dependence on heat shock proteins. FEBS lett 1999;461:306-10.
    [20] Gary DJ, Lee H, Sharma R, Lee JS, Kim Y, Cui ZY, et al. Influence of nano-carrier architecture on in vitro siRNA delivery performance and in vivo biodistribution: polyplexes vs micelleplexes. ACS nano 2011;5:3493-505.
    [21] Yamada A, Taniguchi Y, Kawano K, TakashiHonda, Hattori Y, YoshieMaitani. Design of folate-linked liposomal doxorubicin to its antitumor effect in mice. Clin Cancer Res 2008;2008:8161-8.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE