簡易檢索 / 詳目顯示

研究生: 詹政勳
Chan, Chen Hsun
論文名稱: 太陽與超新星微中子的暗物質米赫耶夫-斯米爾夫-沃芬斯坦效應
Dark Matter Induced Mikheyev-Smirnov-Wolfenstain Effect in The Sun And Core-Collapse Supernovae
指導教授: 張維甫
Chang, We Fu
口試委員: 徐百嫻
Hsu, Pai Hsien
張敬民
Cheung, Kingman
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 64
中文關鍵詞: 微中子MSW效應暗物質太陽微中子超新星
外文關鍵詞: MSW effect, asymmetric dark matter, solar neutrino problem
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們計算了在太陽與超新星微中子受到暗物質的米赫耶夫-斯米爾夫-沃芬斯坦效應。然而,若暗物質不會自我湮滅,例如,不對稱暗物質,才會有足夠大的效應。從太陽微中子觀測實驗的數據,在暗物質質量小於四十百萬電子伏特的範圍,我們得到一個很強的對於微中子與暗物質之間作用力大小的限制條件。在核塌陷超新星中,我們發現只有在超新星的位置很靠近銀河系中心或暗物質與微中子作用力夠強才有機會偵測到這個額外的效應。


    We studied the dark matter induced Mikheyev-Smirnov-Wolfenstein e ect on neutrino oscillations in the Sun and the core-collapse supernovae. However, to have sizable e ect, we found that the dark matter cannot self-annihilate, for instance, the asymmetric dark matter. From the solar neutrino data, we found strong constraint on the interaction between dark matter and neutrino for asymmetric dark matter with mass less than 40 GeV. For supernovae, we found that the additional e ect would be detectable only if the supernova sits close to the Galactic center or the interaction between dark matter and neutrinos is strong enough.

    Contents i List of Tables iii List of Figures vi 1 Introduction 1 2 Brief Review on Neutrino Oscillation 3 2.1 Neutrino Mass, Mixing, And PMNS Matrix . . . . . . . . . . . . . 3 2.2 Neutrino Oscillations in Vacuum.................... 4 2.3 Matter effect on neutrino oscillations ................. 6 2.3.1 Oscillations of solar neutrinos ................. 8 2.4 Experiments and Measurements.................... 9 2.4.1 Solar neutrino oscillations ................... 10 2.4.2 Atmospheric neutrino experiment ............... 11 2.4.3 Experiments of reactor..................... 11 2.4.4 Accelerator neutrino ...................... 11 2.4.5 Short summary ......................... 12 3 MSW Effect on Solar Neutrinos Through Accumulated Dark Matter 14 3.1 MSW Effect of Electrons........................ 14 3.2 Accumulation of Dark Matter in the Sun . . . . . . . . . . . . . . . 15 3.3 Distribution of Accumulated Dark Matter . . . . . . . . . . . . . . 20 3.4 Dark matter MSW Effect in the Sun ................. 21 4 MSW Effect on Neutrino Oscillations in Core-collapse Supernovae 30 4.1 Core-collapse Supernovae........................ 30 4.1.1 Sn1987A............................. 34 4.2 Accumulation of Dark Matter in Core-collapse Supernovae . . . . . 35 4.3 Dark Matter Density Distribution................... 38 4.4 Additional MSW Effect with DarkMatter . . . . . . . . . . . . . . 38 4.4.1 MSW effect of electron only .................. 41 4.4.2 Additional MSW effect of DM................. 44 5 Summary and Conclusion..............48 Reference.........49

    [1] S. P. Mikheev and A. Y. Smirnov, Sov. J. Nucl. Phys. 42, 913 (1985) [Yad.
    Fiz. 42, 1441 (1985)].
    [2] S. P. Mikheev and A. Y. Smirnov, Sov. Phys. JETP 64, 4 (1986) [Zh. Eksp.
    Teor. Fiz. 91, 7 (1986)] [arXiv:0706.0454 [hep-ph]].
    [3] K. A. Olive et al. (PDG), Chin. Phys. C38, 090001 (2014)
    (http://pdg.lbl.gov)
    [4] M. C. Gonzalez-Garcia, M. Maltoni and T. Schwetz, JHEP 1411, 052 (2014) [arXiv:1409.5439 [hep-ph]].
    [5] B. Pontecorvo, Sov. Phys. JETP 26, 984 (1968) [Zh. Eksp. Teor. Fiz. 53, 1717 (1967)].
    [6] L. Okun and B. Pontecorvo, Zh. Eksp. Teor. Fiz. 32, 1587 (1957).
    [7] Z. Maki, M. Nakagawa and S. Sakata, Prog. Theor. Phys. 28, 870 (1962).
    [8] S. M. Bilenky, J. Hosek and S. T. Petcov, Phys. Lett. B 94, 495 (1980).
    [9] J. Schechter and J. W. F. Valle, Phys. Rev. D 22, 2227 (1980).
    [10] L. Wolfenstein, Phys. Rev. D 17, 2369 (1978).
    [11] V. D. Barger, K. Whisnant, S. Pakvasa and R. J. N. Phillips, Phys. Rev. D
    22, 2718 (1980).
    [12] P. Langacker, J. P. Leveille and J. Sheiman, Phys. Rev. D 27, 1228 (1983).
    [13] S. T. Petcov, Phys. Lett. B 200, 373 (1988).
    49
    [14] A. Yu. Smirnov and S. P. Mikheev, Proc. of the VIth Moriond Workshop, (eds. O. Fackler, J. Tran Thanh Van, Frontieres, Gif-sur-Yvette, 1986),p. 355.
    [15] A. Messiah, Proc. of the VIth Moriond Workshop, (eds. O. Fackler, J. Tran Thanh Van, Frontieres, Gif-sur-Yvette, 1986),p. 373.
    [16] S. P. Mikheev and A. Y. Smirnov, Sov. J. Nucl. Phys. 42, 913 (1985) [Yad. Fiz. 42, 1441 (1985)].
    [17] J. N. Bahcall, A. M. Serenelli and S. Basu, Astrophys. J. 621, L85 (2005) [astro-ph/0412440].
    [18] J. N. Abdurashitov et al. [SAGE Collaboration], Phys. Rev. C 80, 015807 (2009) [arXiv:0901.2200 [nucl-ex]].
    [19] W. Hampel et al. [GALLEX Collaboration], Phys. Lett. B 447, 127 (1999).
    [20] M. Altmann et al. [GNO Collaboration], Phys. Lett. B 616, 174 (2005) [hep-
    ex/0504037].
    [21] Y. Fukuda et al. [Kamiokande Collaboration], Phys. Rev. Lett. 77, 1683 (1996).
    [22] K. Abe et al. [Super-Kamiokande Collaboration], Phys. Rev. D 83, 052010 (2011) [arXiv:1010.0118 [hep-ex]].
    [23] B. Aharmim et al. [SNO Collaboration], Phys. Rev. C 88, 025501 (2013) [arXiv:1109.0763 [nucl-ex]].
    [24] G. Bellini et al. [Borexino Collaboration], Phys. Rev. D 82, 033006 (2010) [arXiv:0808.2868 [astro-ph]].
    [25] K. Eguchi et al. [KamLAND Collaboration], Phys. Rev. Lett. 90, 021802 (2003) [hep-ex/0212021].
    [26] MACRO Collaboration, “MACRO results on atmospheric neutrinos,” Nucl. Phys. Proc. Suppl. 145, 116 (2005).
    50
    [27] Soudan-2 Collaboration, “Final atmospheric neutrino oscillation results from Soudan 2,” J. Phys. Conf. Ser. 39, 310 (2006).
    [28] MINOS Collaboration, “Measurements of atmospheric neutrinos and antineu- trinos in the MINOS Far Detector,” Phys. Rev. D 86, 052007 (2012)
    [29] IceCube Collaboration, “Measurement of Atmospheric Neutrino Oscillations with IceCube,” Phys. Rev. Lett. 111, 081801 (2013);
    [30] B. Achkar, R. Aleksan, M. Avenier, G. Bagieu, J. Bouchez, R. Brissot, J. F. Cavaignac and J. Collot et al., Phys. Lett. B 374, 243 (1996).
    [31] Z. D. Greenwood, W. R. Kropp, M. A. Mandelkern, S. Nakamura, E. L. Pasierb-Love, L. R. Price, F. Reines and S. P. Riley et al., Phys. Rev. D 53, 6054 (1996).
    [32] V. Martemyanov, L. Mikaelyan, V. Sinev, V. Kopeikin and Y. Kozlov, Phys. Atom. Nucl. 66, 1934 (2003) [Yad. Fiz. 66, 1982 (2003)] [hep-ex/0211070].
    [33] Palo Verde Collaboration, “Final results from the Palo Verde neutrino oscil- lation experiment,” Prog. Part. Nucl. Phys. 48, 113 (2002).
    [34] Double Chooz Collaboration, “First result from the Double Chooz reactor- neutrino experiment,” arXiv:1205.6685.
    [35] RENO Collaboration, “Status of the RENO Reactor Neutrino Experiment,” Nucl. Phys. Proc. Suppl. 229-232, 97 (2012).
    [36] Daya Bay Collaboration, “Precise Measurement of Electron Antineutrinos Disappearance From the Daya Bay Experiment,” PoS EPS-HEP2013, 521 (2014).
    [37] K2K Collaboration, “Measurement of Neutrino Oscillation by the K2K Ex- periment” Phys. Rev. D 74, 072003 (2006).
    [38] T2K Collaboration, “Observation of Electron Neutrino Appearance in a Muon Neutrino Beam,” Phys. Rev. Lett. 112, 061802 (2014).
    51
    [39] G. L. Fogli, E. Lisi, A. Marrone, D. Montanino, A. Palazzo and A. M. Ro- tunno, Phys. Rev. D 86, 013012 (2012) [arXiv:1205.5254 [hep-ph]].
    [40] G. Steigman, C. L. Sarazin, H. Quintana and J. Faulkner, Astron. J. 83, 1050 (1978).
    [41] D. N. Spergel and W. H. Press, Astrophys. J. 294, 663 (1985); W. H. Press and D. N. Spergel, Astrophys. J. 296, 679 (1985).
    [42] J. Faulkner and R. L. Gilliland, Astrophys. J. 299, 994 (1985).
    [43] K. Griest and D. Seckel, Nucl. Phys. B 283, 681 (1987) [Nucl. Phys. B 296,
    1034 (1988)].
    [44] G. Jungman, M. Kamionkowski and K. Griest, Phys. Rept. 267, 195 (1996) [hep-ph/9506380].
    [45] G. Bertone, D. Hooper and J. Silk, Phys. Rept. 405, 279 (2005) [hep- ph/0404175].
    [46] A. Gould, Astrophys. J. 321, 560 (1987).
    [47] R. Kappl and M. W. Winkler, Nucl. Phys. B 850, 505 (2011) [arXiv:1104.0679
    [hep-ph]].
    [48] N. Bernal, J. Martn-Albo and S. Palomares-Ruiz, JCAP 1308, 011 (2013) [arXiv:1208.0834 [hep-ph]].
    [49] G. Busoni, A. De Simone and W. C. Huang, JCAP 1307, 010 (2013) [arXiv:1305.1817 [hep-ph]].
    [50] C. S. Chen, F. F. Lee, G. L. Lin and Y. H. Lin, JCAP 1410, no. 10, 049 (2014) [arXiv:1408.5471 [hep-ph]].
    [51] I. F. M. Albuquerque, C. Prez de Los Heros and D. S. Robertson, JCAP 1402, 047 (2014) [arXiv:1312.0797 [astro-ph.CO]].
    [52] A. R. Zentner, Phys. Rev. D 80, 063501 (2009) [arXiv:0907.3448 [astro- ph.HE]].
    52
    [53] A. Renshaw [Super-Kamiokande Collaboration], Phys. Procedia 61, 345 (2015) [arXiv:1403.4575 [hep-ex]].
    [54] Carlo Giunti and Chung W. Kim, “Fundamentals of Neutrino Physics and Astrophysics,” chapter 15 (2007).
    [55] Z. Xing and S. Zhou, “Neutrinos in Particle Physics, Astronomy and Cos- mology,” chapter 7 (2010).
    [56] V. Trimble, Rev. Mod. Phys. 54, 1183 (1982).
    [57] T. Totani, K. Sato, H. E. Dalhed and J. R. Wilson, Astrophys. J. 496, 216
    (1998) [astro-ph/9710203].
    [58] T. A. Thompson, A. Burrows and P. A. Pinto, Astrophys. J. 592, 434 (2003) [astro-ph/0211194].
    [59] K. Hirata et al. [Kamiokande-II Collaboration], Phys. Rev. Lett. 58, 1490 (1987).
    [60] R. M. Bionta, G. Blewitt, C. B. Bratton, D. Casper, A. Ciocio, R. Claus, B. Cortez and M. Crouch et al., Phys. Rev. Lett. 58, 1494 (1987).
    [61] D. Notzold, Phys. Lett. B 196, 315 (1987).
    [62] Dina Prialnik, “Stellar Structure and Evolution,” p. 151 (2000).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE