簡易檢索 / 詳目顯示

研究生: 沈柏晉
Shen, Po-Chin
論文名稱: 有長程跳躍的玻色赫巴德模型
Bose-Hubbard Model with Long-Range Hopping
指導教授: 陳柏中
Chen, Pochung
口試委員: 米格爾
Cazalilla, Miguel A.
高英哲
Kao, Ying-Jer
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 43
中文關鍵詞: 玻色-赫巴德模型量子蒙地卡羅密度矩陣重整化群
外文關鍵詞: Bose-Hubbard model, quantum Monte Carlo, density matrix renormalization group
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在此篇論文,我們主要研究⻑程有序在具有⻑程跳躍的一維的玻色-赫巴德模型 (Bose-Hubbard model)。我們使用量子蒙地卡羅(Quantum Monte Carlo) 來模擬系統,測量其關聯 (correlation) 和繞數 (winding number) 並用來計算凝聚係數 (condensate fraction) 和超流體密度 (superfluid density);此外,我們也利用密度矩陣重整化群(Density Matrix Renormalization Group) 來模擬系統,計算出零溫底下基態的糾纏熵 (entanglement entropy) 並用以推算出系統的中心電荷 (central charge)。


    We study long-range orders in one-dimensional Bose-Hubbard model with power-law long-range hoppings. We measure the correlation and the winding numbers of hardcore bosons in one-dimension ring using quantum Monte Carlo simulations to calculate the condensate fraction and the superfluid density. On the other hand, we calculate the Entanglement entropy of open boundary zero-temperature ground states via density matrix renormalization group to estimate the central charge of the system.

    Abstract i 摘要 ii Contents iii 1 Introduction 1 2 Quantum Monte Carlo 2 2.1 Monte Carlo Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2.2 Markov Chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2.3 Path Integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.4 Worm Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3 Density Matrix Renormalization Group 10 3.1 Tensor Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.1.1 Matrix Product States . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.1.2 Graphic Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.1.3 Matrix Product Operators . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.2 The Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 4 Results 16 4.1 Finite Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 4.1.1 Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 4.1.2 Condensate Fraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4.1.3 Superfluid Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.2 Zero Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 4.2.1 MPO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.2.2 Entanglement Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.3 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Bibliography 42

    [1] N.V Prokof’ev, B.V Svistunov, and I.S Tupitsyn. “worm”algorithm in quantum monte carlo simulations. Physics Letters A, 238(4):253 – 257, 1998.
    [2] G.G. Batrouni and R.T. Scalettar. World line simulations of the bosonic hubbard model in the ground state. Computer Physics Communications, 97(1):63 – 81, 1996. High-Performance Computing in Science.
    [3] Ulrich Schollwöck. The density-matrix renormalization group in the age of matrix product states. Annals of Physics, 326:96–192, January 2011.
    [4] Román Orús. A practical introduction to tensor networks: Matrix product states and projected entangled pair states. Annals of Physics, 349:117–158, October 2014.
    [5] E. L. Pollock and D. M. Ceperley. Path-integral computation of superfluid densities. Phys. Rev. B, 36:8343–8352, Dec 1987.
    [6] Kenji Harada. Bayesian inference in the scaling analysis of critical phenomena. Phys. Rev. E, 84:056704, Nov 2011.
    [7] Kenji Harada. Kernel method for corrections to scaling. Phys. Rev. E, 92:012106, Jul 2015.
    [8] B. Pirvu, V. Murg, J. I. Cirac, and F. Verstraete. Matrix product operator representations. New Journal of Physics, 12(2):025012, February 2010.
    [9] J. C. Xavier. Entanglement entropy, conformal invariance, and the critical behavior of the anisotropic spin-s heisenberg chains: Dmrg study. Phys. Rev. B, 81:224404, Jun 2010.
    [10] Hyejin Ju, Ann B. Kallin, Paul Fendley, Matthew B. Hastings, and Roger G. Melko. Entanglement scaling in two-dimensional gapless systems. Phys. Rev. B, 85:165121, Apr 2012.
    [11] Jonathan D’Emidio, Matthew S. Block, and Ribhu K. Kaul. Rényi entanglement entropy of critical SU(n) spin chains. Phys. Rev. B, 92:054411, Aug 2015.

    QR CODE