研究生: |
洪緯竣 Hong, Wei-Jiun |
---|---|
論文名稱: |
980nm多重量子井之磷化銦鎵與砷化鎵異質接面發光電晶體研究 Study of the 980nm InGaP/GaAs HBLET with multiple QWs |
指導教授: |
吳孟奇
Wu, Meng-Chyi |
口試委員: |
蘇住裕
吳孟奇 何充隆 朱治偉 |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 英文 |
論文頁數: | 49 |
中文關鍵詞: | 發光電晶體 、磷化銦鎵/砷化鎵 |
外文關鍵詞: | light-emitting transistor, InGaP/GaAs |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,三五族化合物半導體蓬勃發展,無論是在發光二極體或異質接面雙極性電晶體均有極大的貢獻,由於異質接面雙極性電晶體具有較佳的頻率、高增益值及高功率特性,近年來已被廣泛應用在數位及行動通訊上。其中,在功率轉換上電晶體會以熱以及光的形式溢出,導致輸入功率始終大於輸出功率。有鑑於此,在本論文中將會嘗試將兩層量子井置入電晶體的基極層以提升光輸出特性,以同時達到具備電信號輸出與光信號輸出之元件。
本文中,我們製作出一般的標準異質接面電晶體並藉此確認三端元件的基本特性與製程流程,並將之轉移至發光電晶體的製作。應用該製程,我們研製出一個磷化銦鎵/砷化鎵發光電晶體,並針對發光電晶體的表面鈍化方式作深入探討。在本研究中,我們發現射極面積效應,將影響元件的理想因子,及元件的高頻特性。
In recent years, III-V compound semiconductor devices have been widely developed and applied to the applications of high frequency, high power and light emitter, particularly, the structure of heterojunction bipolar transistors (HBT). However, the efficiency of power conversion of HBTs is small due to heating and lighting effects, which make the input power always larger than the output power. As a result, we use the HBLET structure with embedded two quantum wells in base region to improve its optical properties.
In this work, a standard HBT was first fabricated to fix the process parameters for later fabrication of InGaP/GaAs HBLET. The HBLETs with the different passivation methods were demonstrated and discussed. Our results show that the emitter area effect strongly affects the base ideality factor and the optical response.
[1] J. Bardeen and W. H. Brattain, Phys. Rev. 74, 230 (1948).
[2] W. Schockley, " Circuit elements utilizing semiconductive material ", U. S. Patent, N. 2569, p. 347, 1951.
[3] H. Kroemer, " Heterostructure bipolar transistors and integrated circuits ", IEEE Proc. Vol. 70, p.13, 1982.
[4] S.Brodjo, T.J. Riley, and G.T. Wright, “The heterojunction transistor and the space charge limited triode.” B.J. Appl. Phys. Vol. 16, p.133, 1965.
[5] W.P. Dumke, J.M. Woodall, and V.L. Rideout, “GaAs-GaAlAs heterojunction transistor for high frequency operation.” Solid-State Electron. Vol. 15, p.12, 1972.
[6] M.J. Mondry and H. Kroemer, " Heterostructure bipolar transistor using a (Ga,InP) emitter on a GaAs base, grown by molecular beam epitaxy.” IEEE Electron Device Lett. Vol. EDL-6, p.175, 1985.
[7] M. Feng, N. Holonyak, Jr., and W. Hafez, Light-emitting transistor: Light emission from InGaP/GaAs Heterojunction bipolar transistors, Appl. Phys. Lett. 84, 151 (2004).
[8] M. Feng, N. Holonyak, Jr., and R. Chan, Quantum-well-base heterojunction bipolar light-emitting transistor, Appl. Phys. Lett. 84, 1952 (2004).
[9] M. Feng, a N. Holonyak, Jr., G. Walter, and R. Chan, Room temperature continuous wave operation of a heterojunction bipolar transistor laser, Appl. Phys. Lett. 87, 131103(2005).
[10] G. Walter, A. James, N. Holonyak, Jr., M. Feng, aand R. Chan, Collector breakdown in the heterojunction bipolar transistor laser, Appl. Phys. Lett. 88, 232105(2006).
[11] G. Walter, C. H. Wu, a H. W. Then, M. Feng, and N. Holonyak, Jr., Tilted-charge high speed „ 7 GHz light emitting diode, Appl. Phys. Lett. 94, 231125(2009).
[12] W. Liu, Handbook of III-V Heterojunction Bipolar Transistors, (Wiley-Interscience 1998).
[13] W. Liu, “Fundamentals of III-V Devices,” Wiley, New York, pp.146-150, 1999.
[14] B. Willén, U. Westergren, and H. Asonen, “High-Gain, High-Speed InP/InGaAs Double-Heterojunction Bipolar Transistors with a Step-Graded Base-Collector Heterojunction,” IEEE Electron Device Lett., vol. 16, no. 11, pp.479-481, Nov. 1995.
[15] Song Ping, Lian Jie, Gao Shang, Li Ping, Wang Xiao, Wu Shiliang, Ma Zheng, PECVD Grown SiO2 Film Process Optimization.
[16] M. J. Howes, D. V. Morgan, Gallium Arsenide Materials, Devices, and Circuits, 1983.
[17] Madjid Hafizi, Member, IEEE, William E. Stanchina, Member, IEEE, Robert A. Metzger, Member, IEEE, Perry A. Macdonald, and Freddie Williams, Jr., Temperature Dependence of DC and RF Characteristics of AlInAs/GaInAs HBT’s, IEEE Transactions on Electron Devices, vol. 40, No. 9, September 1993
[18] G. Walter, C. H. Wu, H. W. Then, M. Feng, and N. Holonyak, Jr., 4.3 GHz optical bandwidth light emitting transistor, Applied Physics Letters 94, 241101(2009)
[19] M. Feng, a H. W. Then, N. Holonyak, Jr., G. Walter, and A. James, Resonance-free frequency response of a semiconductor laser, Applied Physics Letters 95, 033509(2009)
[20] S. M. Sze, “Semiconductor devices physics and technology”, Murray Hill, New Jersey, p.120, 1985