簡易檢索 / 詳目顯示

研究生: 何浩維
Ho, Hao-Wei
論文名稱: 能帶工程電荷捕捉層應用於奈米線通道複晶矽快閃記憶體元件之特性分析
Characteristics of Bandgap-Engineered Trapping Layer on Poly-Si Flash Memory Device with Nanowire Channel
指導教授: 張廖貴術
口試委員: 張廖貴術
趙天生
謝嘉民
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 79
中文關鍵詞: 能帶工程奈米線通道快閃記憶體
外文關鍵詞: bangap engineered, nanowire channel, flash memory
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在這科技發達的時代,快閃記憶體元件已經充斥在我們生活當中,廣泛地應用在智慧型手機、平板電腦等可攜式電子產品上。傳統浮動閘極式快閃記憶體元件由於其結構的限制,已經無法滿足微縮發展的趨勢,因此電荷陷阱式快閃記憶體元件便取代了浮動閘極式快閃記憶體元件,成為未來發展的趨勢。然而當電荷陷阱式快閃記憶體元件微縮到次微米以下時,就無法再以降低穿隧氧化層厚度來提升元件的操作效率,所以就發展出取多改良的方法,例如能帶工程元件、奈米線通道結構元件。
    在第一個實驗中,元件的電荷捕捉層分為單層氮化矽、二氧化鉿/氮化矽堆疊兩種,元件結構上則分為平面式與奈米線通道式。由於奈米線通道邊角的電場增強效應,因此奈米線通道式元件擁有較好的寫抹速度,而電荷捕捉層使用二氧化鉿/氮化矽堆疊的元件,在寫抹速度與電荷保持力上表現較好,並具有不差的耐久力特性。
    在第二個實驗中,我們在元件的電荷捕捉層使用了三種堆疊:二氧化鉿/氮化矽、二氧化鉿/多矽型氮化矽、二氧化鉿/氮氧化矽/多矽型氮化矽,目的是透過調變氮化矽的比例以及多層堆疊來達到能帶工程的效果,電荷捕捉層使用二氧化鉿/二氧化矽/多矽型氮化矽堆疊的元件相比於其他兩種電荷捕捉層的元件,在寫抹速度上的表現相差不遠,但在電荷保持力以及耐久力方面則有改善。
    在第三個實驗中,我們嘗試將二氧化鉿/多矽型氮化矽、二氧化鉿/氮氧化矽/多矽型氮化矽這兩種電荷捕捉層,製作在無接面奈米線通道結構的元件上,並與電荷反轉式奈米線通道結構的元件做比較,在寫抹速度方面,兩種結構表現相近,但在電荷保持力以及耐久力的特性上,無接面奈米線通道結構的元件則表現出較好的特性。
    在第四個實驗中,想法是從改變元件結構下手,研究出3-D堆疊的元件來達到微縮的目的。元件設計成上下兩層,上下各有一對源極和汲極,使用一個共同閘極去控制兩個元件。希望藉此元件結構去觀察不同元件設計對電性干擾的影響。本次實驗的元件雖然無法運作,但透過一次完整的製程經驗,已證明此光罩與製程是確實可行的,只要將造成失敗的細節加以改善,相信是可以製作出可堆疊式垂直閘極的快閃記憶體元件。目前的元件結構設計只有兩層,但只要繼續研究,在日後製程穩定時,便可將其繼續往上堆疊,使得微縮元件的效果更好。


    摘要 I 致謝 III 目錄 V 表目錄 VII 圖目錄 VIII 第一章 序論 1 1.1 快閃記憶體元件 1 1.1.1 浮動閘極式快閃記憶體元件 1 1.1.2 電荷陷阱式快閃記憶體元件 2 1.2 多向式閘極結構與奈米線通道式快閃記憶體元件之介紹 3 1.3 高介電係數材料與能帶工程之介紹 4 1.3.1 高介電係數材料 4 1.3.2 能帶工程 4 1.4 無接面奈米線通道式快閃記憶體元件之介紹 6 1.5 各章摘要 7 第二章 快閃記憶體元件製程與操作方法 13 2.1 平面式快閃記憶體元件製程 13 2.2 奈米線通道式快閃記憶體元件製程 14 2.3 無接面奈米線通道式快閃記憶體元件製程 14 2.4 寫入與抹除方法 15 2.4.1 F-N 穿隧寫入 15 2.4.2 F-N 穿隧抹除 16 2.5 元件可靠度分析 16 2.5.1 電荷保持力 16 2.5.2 耐久力 17 第三章 具二氧化鉿/氮化矽堆疊的電荷捕捉層與奈米線通道之快閃記憶體元件特性研究 22 3.1 研究動機與背景 22 3.2 實驗 23 3.3 結果與討論 24 3.3.1 元件寫入與抹除特性 24 3.3.2 元件可靠度特性 26 3.4 結論 26 第四章 具二氧化鉿/氮氧化矽/多矽型氮化矽堆疊的電荷捕捉層與奈米線通道之快閃記憶體元件特性研究 35 4.1 研究動機與背景 35 4.2 實驗 36 4.3 結果與討論 37 4.3.1 元件寫入與抹除特性 37 4.3.2 元件可靠度特性 37 4.4 結論 39 第五章 具二氧化鉿/氮氧化矽/多矽型氮化矽堆疊的電荷捕捉層與無接面奈米線通道之快閃記憶體元件特性研究 45 5.1 研究動機與背景 46 5.2 實驗 47 5.3 結果與討論 47 5.3.1 元件寫入與抹除特性 47 5.3.2 元件可靠度特性 48 5.4 結論 50 第六章 可堆疊式垂直閘極快閃記憶體元件特性研究 60 6.1 研究動機與背景 60 6.2 實驗 61 6.3 結果與討論 62 6.4 結論 62 第七章 結論 72 參考文獻 75

    [1] K. Kahng and S. Sze, “A floating gate and its application to memory devices,” IEEE Trans. Electron Devices, vol. 14, pp. 629-629, 1967.

    [2] A. Wang and W. D. Woo, “Static magnetic storage and delay line,” J. Appl. Phys., vol. 21, pp. 49 –54, 1950.

    [3] S. M. Sze and K. K. Ng, physics of semiconductor Devices, 3rdEd., Wiley Interscience, Hoboken, N.J. 2007.

    [4] T. Y. Tseng and S. M. Sze, Eds, nonvolatile Memories Materials, Devices, and Applications, American Scientific Publishers, Stevenson Ranch, CA, 2012.

    [5] T. Sugizaki, M. Kobayashi, M. Ishidao, H. Minakata, M. Yamaguchi, Y. Tamura, Y. Sugiyama, T. Nakanishi, and H. Tanaka, “Novel multi-bit SNOS type flash memory using a high-k charge trapping layer,” in VLSI Technology, 2003. Digest of Technical Papers. 2003 Symposium on, June 2003, pp. 27 – 28.

    [6] H. H. Hsu, T. W. Liu, L. Chan, C. D. Lin, T. Y. Huang and H. C. Lin, "Fabrication and characterization of multiple-gated poly-Si nanowire thin-film transistors and impacts of multiple-gate structures on device fluctuations," IEEE Trans. Electron Devices, vol. 55, pp. 3063-3069, 2008.

    [7] Y. H. Lu, P. Y. Kuo, Y. H. Wu, Y. H. Chen and T. S. Chao, "Novel GAA raised source / drain sub-10-nm poly-si NW channel TFTs with self-aligned corked gate structure for 3-D IC applications," in VLSI Symp. Tech. Dig. 2011, pp. 142-143.

    [8] T. H. Hsu, H. T. Lue, E. K. Lai, J. Y. Hsieh, S. Y. Wang, Y. L. Wu, Y. C. King, T. Yang, K. C. Chen, K. Y. Hsieh, R. Liu and C. Y. Lu, "A high-speed BE-SONOS NAND flash utilizing the field-enhancement effect of FinFET," in IEDM Tech. Dig. 2007, pp. 913-916.

    [9] Y. N. Tan, W. K. Chim, J. C. Byung and W. K. Choi, "Over-erase phenomenon in SONOS-type flash memory and its minimization using a hafnium oxide charge storage Layer," IEEE Trans. Electron Devices, vol. 51, pp. 1143-1147, 2004.

    [10] S. C. Lai, H. T. Lue, M. J. Yang, J. Y. Hsieh, S. Y. Wang, T. Wu, G. L. Luo, C. H. Chien, E. K. Lai, K. Y. Hsieh, R. Liu and C. Lu, "MA BE-SONOS: A bandgap engineered SONOS using metal gate and Al2O3 blocking layer to overcome erase saturation," in Non-Volatile Semiconductor Memory Workshop, 2007, pp. 88-89.

    [11] H. T. Lue, S. Y. Wang, E. K. Lai, Y. H. Shih, S. C. Lai, L. W. Yang, K. Chen, J. Ku, K. Y. Hsieh, R. Liu and C. Y. Lu, "BE-SONOS: A bandgap engineered SONOS with excellent performance and reliability," in IEDM Tech. Dig. 2005, pp. 547-550.

    [12] Z. H. Ye, K. S. Chang-Liao, T. C. Liu, T. K. Wang, P. J. Tzeng, C. H. Lin and M. J. Tsai, "A novel SONOS-type flash device with stacked charge trapping layer," Microelectron. Eng., vol. 86, pp. 1863-1865, 2009.

    [13] G. Zhang, C. H. Ra, H. M. Li, C. Yang and W. J. Yoo, "Potential well engineering by partial oxidation of TiN for high-speed and low-voltage flash memory with good 125°C data retention and excellent endurance," in IEDM Tech. Dig. 2009, pp. 1-4.

    [14] J. P. Colinge, I. Ferain, A. Kranti, C. W. Lee, N. D. Akhavan, P. Razavi, R. Yan and R. Yu, "Junctionless nanowire transistor: complementary metal-oxide-semiconductor without junctions," Sci. Adv. Mater., vol. 3, pp. 477-482, 2011.

    [15] J. P. Colinge, C. W. Lee, A. Afzalian, N. D. Akhavan, R. Yan, I. Ferain, P. Razavi, B. O'Neill, A. Blake, M. White, A. M. Kelleher, B. McCarthy and R. Murphy, "Nanowire transistors without junctions," Nat. Nanotechnol., vol. 5, pp. 225-229, 2010.

    [16] C. J. Su, T. K. Su, T. I. Tsai, H. C. Lin and T. Y. Huang, "A junctionless SONOS nonvolatile memory device constructed with in situ-doped polycrystalline silicon nanowires," Nanoscale Res. Lett., vol. 7, pp. 1-6, 2012.

    [17] H. T. Lue, Y. H. Hsiao, P. Y. Du, S. C. Lai, T. H. Hsu, S. P. Hong, M. T. Wu, F. H. Hsu, N. Z. Lien, C. P. Lu, J. Y. Hsieh, L. W. Yang, T. Yang, K. C. Chen, K. Y. Hsieh, R. Liu and C. Y. Lu, "A novel buried-channel FinFET BE-SONOS NAND flash with improved memory window and cycling endurance," in VLSI Symp. Tech. Dig. 2009, pp. 224-225.

    [18] T. C. Liao, S. W. Tu, M. H. Yu, W. K. Lin, C. C. Liu, K. J. Chang, Y. H. Tai and H. C. Cheng, "Novel gate-all-around poly-Si TFTs with multiple nanowire channels," IEEE Electron Device Lett., vol. 29, pp. 889-891, 2008.

    [19] T. C. Liao, S. K. Chen, M. H. Yu, C. Y. Wu, T. K. Kang, F. T. Chien, Y. T. Liu, C. M. Lin and H. C. Cheng, "A novel LTPS-TFT-based charge-trapping memory device with field-enhanced nanowire structure," in IEDM Tech. Dig. 2009, pp. 1-4.

    [20] N. Yamauchi, J. J. Hajjar and R. Reif, "Polysilicon thin-film transistors with channel length and width comparable to or smaller than the grain size of the thin film," IEEE Trans. Electron Devices, vol. 38, pp. 55-60, 1991.

    [21] J. Bu and M. White, “Retention reliability enhanced SONOS NVSM with scaled programming voltage,” in Aerospace Conference Proceedings, 2002. IEEE, vol. 5, 2002, pp. 5–2383 – 5–2390 vol.5.

    [22] W. Tsai, N. Zous, C. Liu, C. Liu, C. Chen, T. Wang, S. Pan, C.-Y. Lu, and S. Gu, “Data retention behavior of a SONOS type two-bit storage flash memory cell,” in Electron Devices Meeting, 2001. IEDM ’01. Technical Digest. International, 2001, pp. 32.6.1 –32.6.4.

    [23] K. San, C. Kaya, and T. Ma, “Effects of erase source bias on flash EPROM device reliability,” Electron Devices, IEEE Transactions on, vol. 42, no. 1, pp. 150 –159, Jan 1995.

    [24] R. Katsumata, M. Kito, Y. Fukuzumi, M. Kido, H. Tanaka, Y. Komori, M. Ishiduki, J. Matsunami, T. Fujiwara, Y. Nagata, Li Zhang, Y. Iwata, R. Kirisawa, H. Aochi and A. Nitayama, "Pipe-shaped BiCS flash memory with 16 stacked layers and multi-level-cell operation for ultra high density storage devices," in VLSI Symp. Tech. Dig. 2009, pp. 136-137.

    [25] J. Jang, H. S. Kim, W. Cho, H. Cho, J. Kim, S. I. Shim, Y. Jang, J. H. Jeong, B. K. Son, D. W. Kim, J. J. Shim, J. S. Lim, K. H. Kim, S. Y. Yi, J. Y. Lim, C. Dewill, H. C. Moon, S. Hwang, J. W. Lee, Y. H. Son, U. Chung and W. S. Lee, "Vertical cell array using TCAT(terabit cell array transistor) technology for ultra high density NAND flash memory," in VLSI Symp. Tech. Dig. 2009, pp. 192-193.

    [26] J. Kim, A. J. Hong, M. K. Sung, E. B. Song, J. H. Park, J. Han, S. Choi, D. Jang, J. T. Moon and K. L. Wang, "Novel vertical-stacked-array-transistor (VSAT) for ultra-high-density and cost-effective NAND flash memory devices and SSD (solid state drive)," in VLSI Symp. Tech. Dig. 2009, pp. 186-187.

    [27] H. T. Lue, T. H. Hsu, Y. H. Hsiao, S. P. Hong, M. T. Wu, F. H. Hsu, N. Z. Lien, S. Y. Wang, J. Y. Hsieh, L. W. Yang, T. Yang, K. C. Chen, K. Y. Hsieh and C. Y. Lu, "A highly scalable 8-layer 3D vertical-gate (VG) TFT NAND flash using junction-free buried channel BE-SONOS device," in VLSI Symp. Tech. Dig. 2010, pp. 131-132.

    [28] C. Y. Wu, Y. T. Liu, T. C. Liao, M. H. Yu and H. C. Cheng, "Novel dielectric-engineered trapping-charge poly-Si-TFT memory with a TiN-Alumina-Nitride-Vacuum-Silicon structure," IEEE Electron Device Lett., vol. 32, pp. 1095-1097, 2011.

    [29] P. H. Tsai, K. S. Chang-Liao, T. C. Liu, T. K. Wang, P. J. Tzeng, C. H. Lin, L. S. Lee and M. J. Tsai, "Charge-trapping-type flash memory device with stacked high-k charge-trapping layer," IEEE Electron Device Lett., vol. 30, pp. 775-777, 2009.

    [30] P. C. Huang, L. A. Chen and J. T. Sheu, "Electric-field enhancement of a gate-all-around nanowire thin-film transistor memory," IEEE Electron Device Lett., vol. 31, pp. 216-218, 2010.

    [31] C. W. Luo, H. C. Lin, K. H. Lee, W. C. Chen, H. H. Hsu and T. Y. Huang, "Impacts of nanocrystal location on the operation of trap-layer-engineered poly-Si nanowired gate-all-around SONOS memory devices," IEEE Trans. Electron Devices, vol. 58, pp. 1879-1885, 2011.

    [32] T. S. Chen, K. H. Wu, H. Chung and C. H. Kao, "Performance improvement of SONOS memory by bandgap engineering of charge-trapping layer," IEEE Electron Device Lett., vol. 25, pp. 205-207, 2004.

    [33] Z. H. Ye, K. S. Chang-Liao, C. Y. Tsai, T. T. Tsai and T. K. Wang, "Enhanced Operation in Charge-Trapping Nonvolatile Memory Device With Si3N4/Al2O3/HfO2 Charge-Trapping Layer," IEEE Electron Device Lett., vol. 33, pp. 1351-1353, 2012.

    [34] N. Goel, D. C. Gilmer, H. Park, V. Diaz, Y. Sun, J. Price, C. Park, P. Pianetta, P. D. Kirsch and R. Jammy, "Erase and retention improvements in charge trap flash through engineered charge storage layer," IEEE Electron Device Lett., vol. 30, pp. 216-218, 2009.

    [35] T. K. Su, T. I. Tsai, C. J. Su, H. C. Lin and T. Y. Huang, "Fabrication and characterization of a junctionless SONOS transistor with poly-si nanowire channels," in International Nanoelectronics Conference, 2011, pp. 1-2.

    [36] Y. Sun, H. Y. Yu, N. Singh, K. C. Leong, E. Gnani, G. Baccarani, G. Q. Lo, and D. L. Kwong, "Vertical-Si-Nanowire-Based Nonvolatile Memory Devices With Improved Performance and Reduced Process Complexity, " IEEE Trans. Electron Devices, vol. 58, pp. 1329-1335, 2011.

    [37] Yi-Hsuan Hsiao, Hang-Ting Lue, Tzu-Hsuan Hsu, Kuang-Yeu Hsieh and Chih-Yuan Lu, "A critical examination of 3D stackable NAND flash memory architectures by simulation study of the scaling capability," in Memory Workshop (IMW), 2010 IEEE International, 2010, pp. 1-4.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE