簡易檢索 / 詳目顯示

研究生: 張晏榕
Chang, Yen-Jung
論文名稱: 鐵磁增強電感耦合電漿放電數值模擬計算分析
Numerical Simulation Study of Ferromagnetic Enhanced Inductively Coupled Plasma Discharges
指導教授: 柳克強
Leou, Keh-Chyang
口試委員: 寇崇善
潘彥儒
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 150
中文關鍵詞: 鐵磁增強電感耦合電漿遠距電漿源磁極增強電感耦合電漿流體模型
外文關鍵詞: Ferromagnetic Enhanced Inductively Coupled Plasma, remote plasma system, magnetic-pole enhanced inductively coupled plasma, fluid model
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鐵磁增強電感耦合電漿,相較於電感耦合電漿,在耦合器中有較低的功率消耗,能量傳輸效率較好,而有比較高的功率因數(power factor)。本研究主旨為探討鐵磁增強電感耦合電漿(ferromagnetic enhance inductively coupled plasma)的放電特性。本研究建立電漿流體模型,結合電磁場與流體熱傳理論來進行模擬計算。主要探討的有兩種鐵磁增強電感耦合電漿源,分別是磁極增強電感耦合電漿(magnetic-pole enhanced inductively coupled plasma , MaPE-ICP)與鐵磁增強電感耦合遠距電漿(ferromagnetic enhanced inductively coupled plasma, FMICP),前者通常操作在較低氣壓,較適合大面積電漿製程之應用,後者常作為遠距電漿源(remote plasma source, RPS)之應用。
      在FMICP模擬計算分別以三維與二維模型模擬計算分析。其中三維模型計算流場與電磁場分布,二維模型計算電漿、電磁場與熱傳耦合的結果分佈。在三維模型的結果顯示,得出電磁場分布,氣體流動為螺旋形方向。二維模型分為兩種,分別為平面模型(2D x-y model)與二維柱型(2D r-z model)。前者考慮鋁腔體與陶瓷的效應,後者則沒有考慮其效應。二維平面模型模擬結果顯示,在總功率約5 kW,2 Torr氬氣氣壓下,體平均電子密度約91019 1/m3、體平均氣體溫度約818.86 K、體平均電子溫度為1.2 eV。固定1 Torr氣壓下,體平均電子密度與體平均氣體溫度隨功率增加而上升,從約20 W到5 kW,體平均電子密度從約1.861017 上升至5.11019 1/m3 與體平均氣體溫度從304 K上升至630 K。此外,因DC BREAK的效應在低功率時,吸收功率密度分佈與電子密度分佈集中在DC BREAK附近,電漿特性為電容性,然而功率超過約1.6 kW以上時,電子密度分佈與吸收功率密度分佈均勻分佈整環電漿區域,電漿特性轉為電感性。另一方面,在低功率下,在鋁腔體的電流大小比在電漿中大,如功率約500 W,電漿電流約0.008 A/m,而在鋁腔體電流約36.3 A/m。而在高功率下,在電漿區中的電流會大於在鋁腔體中的電流,功率在約5 kW下電漿電流約3434.8 A/m鋁腔體電流約516.3 A/m。此外,比較總功率、在鋁腔體內的吸收功率與電漿吸收功率隨線圈電流的變化,從結果顯示,大部分的吸收功率都被電漿所吸收。另外固定線圈電流3430.4 A/m下,氣壓上升功率下降是因,在氣壓1 : 2 : 4 Torr下功率的比值為3.67 : 3.32 : 3.01。而且氣壓上升,體平均電子密度與氣體溫度皆上升,從氣壓1 Torr至4 Torr,分別上升至約1020 1/m3 與1100 K。
      在FMICP二維柱形模型模擬方面,結果顯示在總功率為100 W,2Torr氬氣氣壓下,其體平均電子密度、電子溫度與氣體溫度分別約為,31018 1/m3 ,1.03 eV與321.3 K。另一方面,在高功率的電漿密度比低功率的軸向電漿密度分佈均勻,原因為在高功率下,磁場在腔體頂端與底端磁場比其他區域大,以至於在此區域中感應電場也較大,故在這兩個區域有較高的吸收功率,所以電子密度在高功率比在低功率時均勻。此外在高功率下電漿腔體中間區域的電場較低功率低,原因在於高功率的電漿電流要低功率來得大,故感應更大的與線圈電流相反方向的磁場。
      在MaPE-ICP模型模擬計算方面,其中磁極為錳鋅材料,介電窗是陶瓷材料。模擬參數固定300 W,30 mTorr氣壓下,探討不同鐵芯的形狀與位置對電子密度均勻度的影響。由模擬結果顯示,透過改變不同鐵氧體鐵芯的形狀或位置,使在電漿區域的電場分佈較為均勻,故電漿的均勻度上升。


    Ferromagnetic enhanced inductively coupled plasma (FMICP) has lower power loss in the coupler and has better power transfer efficiency than the conventional inductively coupled plasma(ICP) . So FMICP has higher power factor than ICP .     
    This study investigates discharge characteristic of FMICP. In this study building fluid plasma model , combines electromagnetic field and heat transfer theory to compute numerical simulation . There are two different types of FMICP to investigate in this study respectively , magnetic-pole enhanced inductively coupled plasma (MaPE-ICP) ,which is used to do big area plasma process , and the FMICP with closed ferrite core , which is used to be remote plasma system(RPS) to clean the process chamber .
      Use three dimension and two dimension model to do numerical simulation analysis .In three dimension model, simulate the distribution of flow and electromagnetic field . The two dimension model is planar and column type model respectively . In three dimension model, the simulation result reveal that the electric field direction is azimuthal direction in plasma region and the direction of flow is helical , For the planar type model, at 5 kW total power and 2 Torr gas pressure, the volume averaged electron density is roughly 91019 1/m3 , volume averaged gas temperature is roughly 818.86 K and the volume averaged electron temperature is roughly 1.2 eV . Fixing 1 Torr gas pressure, volume average electron density and gas temperature respectively increase to 51019 1/m3 and 630 K . And at low power, the current in Al chamber is higher than the current in plasma region . In addition to, the effect of DC BREAK causes the uniform electron and power density distribution that the characteristic of plasma is capacitive at low power . And at high power , the electron density distribution is uniform around the plasma chamber and thus resulting in the inductive plasma characteristic . However at high power , the current in plasma region is higher than the current in Al chamber . For instance, at 5 kW total power the plasma current is roughly 3434.8 A/m and current in Al chamber is roughly 516.3 A/m . And at low power, the current in plasma region is lower than the current in Al chamber . For instance, at 500 W total power the plasma current is roughly 0.008 A/m and current in Al chamber is roughly 36.3 A/m . The most of power density absorb in plasma comparing to which is in plasma and Al chamber . In addition , fixing coil current 3430.4 A/m, total power decrease with gas pressure due to power ratio 3.67 : 3.32 : 3.01 at 1, 2, and 4 Torr . And volume average electron density and gas temperature increase with gas pressure , which are respectively increase to 1020 1/m3 and 1100 K .
      For column type model, at 100 W total power and 2 Torr gas pressure , the volume averaged electron density, electron temperature and gas temperature is roughly 3.331018 1/m3 ,1.03 eV and 321.3 K respectively . On the other hand, the electron density is more uniform at high power than it is at low power . Because magnetic flux density is higher than the other position at the top and bottom of plasma chamber so that the inductive electric field is high in these region . So the power density is more uniform at high power than it is at low power . In addition , the electric field in the middle of plasma region at high power is lower than which is at low power . The reason is that plasma current at high power is higher than which is at low power, so the magnetic flux density induced back higher magnetic flux density .
      For MaPE-ICP model , the ferrite core is Mn-Zn ,and the dielectric window is ceramic . At 300 W total power and 30 mTorr gas pressure, investigate different position and geometry of ferrite core affect of the uniform of plasma density . In this model , the simulation result reveal that different geometry and position makes the electric field is uniform in plasma region , and thus the plasma uniformity increase .

    摘要------------------------------------------------i 目錄------------------------------------------------vi 圖目錄----------------------------------------------ix 表目錄----------------------------------------------xiv 第一章 簡介-----------------------------------------1 1.1 研究背景----------------------------------------1 1.2 鐵磁增強電感耦合電漿源之簡介----------------------3 1.3 研究動機與目的-----------------------------------5 第二章 文獻回顧--------------------------------------6 2.1 鐵磁增強電感耦合電漿之建立與回顧-------------------6 2.2 文獻回顧結論-------------------------------------16 第三章 物理模型與研究方法-----------------------------17 3.1 模擬軟體介紹-------------------------------------17 3.2 模擬之物理模型----------------------------------17 3.2.1 電磁場求解------------------------------------18 3.2.1 電子傳輸理論----------------------------------20 3.2.2 離子與中性粒子傳輸理論-------------------------23 3.2.3 流體熱傳理論----------------------------------27 3.3 模擬之幾何結構----------------------------------29 3.4 邊界條件---------------------------------------33 3.5 反應式資料庫-----------------------------------35 第四章 鐵磁增強電感耦合電漿模擬結果-------------------38 4.1 磁極增強電感耦合電漿模擬條件與初始參數------------38 4.2 暫態模擬結果-----------------------------------39 4.2.1 電磁場分布-----------------------------------39 4.2.2 磁極增強電感耦合電漿基本放電特性---------------43 4.3 改變鐵芯的幾何結構對電漿的影響-------------------49 4.3.1 模擬不同結構之放電特性的比較-------------------50 第五章 三維RPS電漿模擬------------------------------57 5.1 3D RPS model之氣流模擬條件與初始條件------------57 5.1.1 3D RPS model之氣流模擬結果-------------------58 5.1.2 改變不同進氣流量的比較------------------------59 5.2 3D RPS model之電磁場模擬條件-------------------60 5.2.1 3D RPS model之電磁場結果---------------------60 5.3 3D RPS model之電漿模擬條件與初始條件------------63 5.3.1 3D half model of RPS之電磁場結果-------------65 5.4 二維RPS電漿(2D RPS r-z model)模擬條件與初始參數--69 5.5 二維RPS電漿(2D RPS r-z model)暫態模擬結果--------70 5.5.1 2D RPS r-z model電磁場分布-------------------70 5.5.2 2D RPS r-z model電漿基本放電特性--------------71 5.5.3 2D RPS r-z model 考慮有無熱傳比較--------------79 5.5.4 不同功率比較----------------------------------80 5.6二維RPS電漿(2D RPS x-y model)模擬條件與初始參數----84 5.7 二維RPS(2D RPS x-y model)電漿暫態模擬結果--------85 5.7.1電磁場分布-------------------------------------85 5.7.2 2D RPS x-y model電漿基本放電特性-------------88 5.7.3 2D RPS x-y model 考慮有無熱傳比較------------102 5.8 不同線圈電流對電漿參數的影響---------------------104 5.8.1 電漿(2D RPS x-y model)隨線圈電流改變之放電特性--105 5.9 不同氣壓對電漿參數的影響--------------------------112 5.9.1 電漿(2D RPS x-y model)隨氣壓改變之放電特性------113 5.10 電流在電漿區域與鋁腔體之比較---------------------116 5.10.1 不同線圈電流的模擬參數------------------------116 5.10.2 在電漿區域與鋁腔體的電流結果-------------------117 5.11 吸收功率的比較---------------------------------121 5.11.1 不同線圈電流的模擬參數------------------------121 5.11.2 在電漿、鋁腔體中的吸收功率與總吸收功率比較------122 第六章 總結----------------------------------------123 6.1 總結-------------------------------------------123 參考資料--------------------------------------------126 附錄-----------------------------------------------128 鐵磁增強電感耦合電漿暫態模擬結果----------------------128 2D RPS r-z model電磁場分布--------------------------128 2D RPS r-z model電漿基本放電特性---------------------130 2D RPS r-z model中重粒子之分析-----------------------143 2D RPS x-y model 其他電磁參數結果--------------------144 2D RPS x-y model 其他參數結果------------------------146 鐵氧體鐵芯材料等效B-H curve---------------------------149  

    [1] B. J. a. C. A, "US Patent 2,030,957," 1936.
    [2] I. M. U. a. M. V. Isupov, APPLIED PHYSICS IN THE 21ST CENTURY, (HORIZONS IN WORLD PHYSICS, VOLUME 266) P133 chapter 3.
    [3] C. X. Smith D K, Holber W M and Georgelis, "US Patent 6,150,628," 1998.
    [4] C. S. Kou, "Characteristics of MKS RPS," 2014.
    [5] A. W. A.Srivastava, I.Koo, "Using a Remote Plasma Source for n-Type Plasma Doping Chamber Cleans," Applied Materials, Varian Semiconductor Equipment.
    [6] S. E, 10th Int. Symp. on Sci. and Technol. of Light Sources (Toulouse, France) p 287, 2004.
    [7] V. Godyak, "Ferromagnetic enhanced inductive plasma sources," Journal of Physics D: Applied Physics, vol. 46, p. 283001, 2013.
    [8] P. C. a. F. R. T Meziani1, "Design of a magnetic-pole enhanced inductively
    coupled plasma source," Plasma Sources Science and Technology, 2001.
    [9] G. V. A, "15th Int. Conf. on Gas Discharges and their Applications (Toulouse, France) vol 2 p 621," 2004.
    [10] V. A. G. a. B. M. A. R B Piejak, "A simple analysis of an inductive RF discharge," Journal of Physics D: Applied Physics, 1992.
    [11] M. A. L. A. J. LICHTENBERG, PRINCIPLES OF PLASMA DISCHARGES AND MATERIALS PROCESSING p188.
    [12] G. G. E. Kaindler, K. Drescher, "Characterization of plasma in an inductively coupled high-dense plasma source," ELSEVIER, 1995.
    [13] M. company, " rps principal of rps operation."
    [14] a. D. K. Theodoros Panagopoulos, Vikas Midha,b) and Demetre J. Economouc), "Three-dimensional simulation of an inductively coupled plasma reactor," 2002.
    [15] R. S. Brokaw, "Predicting Transport Properties of Dilute Gases."
    [16] N. PHILIP D, A, R. JANZEN, AND R. A. AZIZ, "Empirical Equations to Calculate 16 of the Transport Collision Integrals Ω(l, s)* for the Lennard-Jones (12–6) Potential," THE JOURNAL OF CHEMICAL PHYSICS 2005.
    [17] J. A. J. L. I. S. G. Thodos, "The viscosity of pure substances in the dense gaseous and liquid phases," Aiche Journal, 1964.
    [18] A. O. Brezmes and C. Breitkopf, "Fast and reliable simulations of argon inductively coupled plasma using COMSOL," Vacuum, vol. 116, pp. 65-72, 2015.
    [19] D. P. L. a. D. J. Economou, "Fluid simulations of glow discharges : Effect of metastable atoms in argon," 1992.
    [20] T. company. Ferrites and Accessories [Online].
    [21] O. B. Gerhard Paoli, and Gerhard Buchgraber., "Complex Representation in Nonlinear Time Harmonic Eddy Current Problems " ” Magnetics, IEEE Transactions, vol. 34.5, pp. 2625-2628,, 1998.

    QR CODE