簡易檢索 / 詳目顯示

研究生: 翁嘉謙
Weng, Chia-Chien
論文名稱: ToggleFinder: 對大型電路進行準確的暫存器階層訊號變換活動估測之多重模式方法
ToggleFinder: A Multi-Mode Methodology for Accurate RTL Switching Activity Estimation of Large Designs
指導教授: 黃錫瑜
Huang, Shi-Yu
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 69
中文關鍵詞: 功率評估晶片功率估測暫存器階層功率估測
外文關鍵詞: Power Estimation, RTL Power Estimation, Power Analysis, Power Modeling, Power Characterization
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 晶片功率估測可以在晶片設計過程中不同的層級來進行,在較低階層進行時(如電晶體層級或邏輯匣層級),雖可得到較高的估測準確度,但往往需要很長的模擬時間;反之,在較高階層進行時(如暫存器階層或系統階層),雖然可以得到很快的模擬速度,但估測的準確度往往不足。所以,傳統上,晶片的功率估測是很難做到又快又準。

    在本篇論文中,我們將介紹三套功率評估軟體,並且建構了一個混合階層的功率評估系統。第一套軟體,稱為ToggleFinder,可以在暫存器階層對大型電路進行訊號變動的估測,並且由於過去的方法在針對大型電路估測時,常有兩個問題:第一,因未考慮到電路的行為可操作在多種不同的功能模式,而導致建立出來的功率模型不夠準確,為此,我們提出了多重模式的功率評估作法,來提高估測的準確度。第二,過去在建立功率模型的過程中,常使用線性迴歸的數學方法,在電路較大的情況,因需要較多的樣本數,所以需要較長的模型建立時間,我們提出了一個simulation-based linear approximation的方式,可提升此過程的效率。第二套軟體,稱為PowerBrick,可以自動化地對邏輯匣的標準元件庫以及記憶體產生器進行功率模型的建立,在此過程中,我們會執行較低階層的功率評估軟體,來得到較準確的功率結果。第三套軟體,稱為PowerMixer,進一步結合前兩套軟體,可以在邏輯匣層級或者暫存器層級進行功率的估測,同時我們也提出了在大型電路具有多重時脈域的情況下功率估測的作法。

    此一混合階層的功率評估系統,結合了較低模擬層級的準確度與較高模擬層級的速度,使得整個功率評估過程可以又快又準。實驗結果顯示,此方法可以較傳統的邏輯匣層級模擬方式快約10倍,且估測的平均誤差在5%以內,有相當高的準確度。


    Power estimation at the Register Transfer Level (RTL) often suffers from inadequate accuracy when applied to large designs, under realistic functional patterns. This problem is mainly due to the large variations of the switching activities induced in a circuit from one functional mode to another. We address this issue by a multi-mode methodology with two major enhancement techniques. Firstly, we use a power mode classification scheme to refine the power-consuming behaviors of a large design. Secondly, we incorporate a simulation-based linear approximation scheme for more efficient power characterization. The combination of these two techniques jointly contributes to higher accuracy. The proposed methodology has been realized as a practical tool that can fit into the commercial design flow. Experimental results of a number of real designs show that the estimation error can be reduced down to only 3.98 % on the average under realistic functional patterns.

    Chapter 1 Introduction 1 Chapter 2 Multi-Mode Power Estimation Flow 5 Chapter 3 Detailed Techniques 11 3.1 Power Mode Classification 11 3.2 Training Pattern Selection 15 3.3 Power Characterization 18 Chapter 4 Mixed-Level Power Estimation System 22 4.1 System Overview 23 4.2 Power Characterization for Standard Cell library 24 4.2.1 Characterization for Combinational Cells with Single Output 26 4.2.1.1 Random Training Pattern Set 26 4.2.1.2 Full-Swing Model 27 4.2.1.3 Partial-Swing Model 30 4.2.1.4 Internal Power Model 33 4.2.1.5 Leakage Power Model 33 4.2.2 Characterization for Combinational Cells with Multiple Outputs 34 4.2.2.1 Switching Power Model 34 4.2.2.2 Internal and Leakage Power Model 34 4.2.3 Characterization for Flip-Flop Cells 35 4.2.4 Characterization for Latch Cells 37 Chapter 5 Power Estimation for Multiple Clock Domains 38 5.1 Overall Flow 39 5.2 Clock-Triggering Mode Identification 42 5.3 Clock Logic Simulation 44 Chapter 6 Experiment Results 46 6.1 Results on Data-Path Components 48 6.2 Results of Larger Designs 50 6.3 CPU Time Comparison 54 6.4 PowerMixer Results 57 6.5 Comparisons with Previous Works 60 Chapter 7 Conclusion 64 Special Acknowledgements 65 Bibliography 66

    [1] L. Benini, A. Bogliolo, M. Favalli, and G. De Micheli, "Regression Models for Behavioral Power Estimation," Int’l Workshop on Power and Timing Modeling, Optimization and Simulation, Bologna, Italy, (Sept. 1996).
    [2] A. Bogliolo and L. Benini, “Node Sampling: A Robust RTL Power Modeling Approach,” Proc. of Int’l Conf. on Computer-Aided Design, pp. 8-12, (1998).
    [3] A. Bogliolo, L. Benini, G. DeMicheli, “Regression-Based RTL Power Modeling,” ACM Trans. on Design Automation of Electronics Systems, Vol. 5, No. 3, pp. 337-372, (2000).
    [4] A. Bogliolo, R. Corgnati, E. Macii, M. Poncino, “Parameterized RTL Power Models for Soft Macros,” IEEE Trans. on VLSI Systems, Vol. 9, No. 6, pp. 880-887, (2001).
    [5] B. L. Bowerman and R. T. O’Connell, “Linear Statistical Models – An Applied Approach,” PWS-Kent, (1990).
    [6] K. M. Buyuksahin and F. N. Najm, “Early Power Estimation for VLSI Circuits,” IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, Vol. 24, No. 7, pp. 1076-1088, (July 2005).
    [7] Lipeng Cao, “Circuit Power Estimation Using Pattern Recognition Techniques,” Proc. of Int’l Conf. on Computer-Aided Design, pp. 412 – 417, (2002).
    [8] R. Corgnati, E. Macii, M. Poncino, “Clustered Table-Based Macromodels for RTL Power Estimation”, Proc. of Great Lake Symposium on VLSI, pp. 354 – 357, (1999).
    [9] M. Eiermann and W. Stechele, “Novel Modeling Techniques for RTL Power Estimation,” Proc. of Low-Power Electronics and Design (ISLPED), pp. 323-328, (2002).
    [10] S. Gupta and F. N. Najm, “Power Macromodeling for High-Level Power Estimation,” Proc. of Design Automation Conf., pp. 365-370, (1997).
    [11] S. Gupta and F. N. Najm, “Analytical Models for RTL Power Estimation of Combinational and Sequential Circuits,” IEEE Trans. On Computer-Aided Design of Integrated Circuits and Systems, Vol. 19, No. 7, pp. 808-814, (June 2000).
    [12] Y.-M. Jiang, S.-Y. Huang, K.-T. Cheng, D.C. Ching, Y. Ho, “A Hybrid Power Model for RTL Power Estimation,” Proc. of Asia-South Pacific Design Automation Conf., pp. 551-556, (Feb. 1998).
    [13] P. Kalla, J. Henkel, and X. S. Hu, “SEA: Fast Power Estimation for Micro-Architecture,” Proc. of Asia and South Pacific Design Design Automation Conf., pp. 600-605, (Jan. 2003).
    [14] P. Landman, J. Rabaey, “Architectural Power Analysis: The Dual-Bit Type Method,” IEEE Trans. on VLSI Systems, Vol. 3, No. 2, pp. 173-187, (1995).
    [15] E. Macii, “RTL Power Estimation and Optimization,” Proc. of Integrated Circuits and Systems Design, pp. 1, (2004).
    [16] R. Marculescu, D. Marculescu, and M. Pedram, “Sequence Compaction for Power Estimation: Theory and Practice,” IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, Vol. 18, No. 7, pp. 973-993, (July 1999).
    [17] A. K. Murugavel, N. Ranganathan, R. Chandramouli, and S. Chavali, “Least-Square Estimation of Average Power in Digital CMOS Circuits,” IEEE Trans. on Very Large Scale Integration (VLSI) Systems,Vol. 10, No. 1, pp. 55-58. (Feb. 2002).
    [18] F. Najm, “A Survey of Power Estimation Techniques in VLSI Circuits,” IEEE Trans. on VLSI Systems, Vol. 2, No. 4, pp. 446-455, (Dec. 1994).
    [19] F. Najm, S. Goel, and I. N. Hajj, "Power Estimation in Sequential Circuits," Proc. of the 32th Design Automation Conference, pp. 635--640, (1995).
    [20] N. R. Potlapally, A. Raghunathan, G. Lakshminarayana, M. Hsiao, and S. T. Chakradhar, "Accurate Power Macro-Modeling Techniques for Complex RTL Components," Proc. of Int’l Conf. on VLSI Design, pp. 235--241, (Jan. 2001).
    [21] Q. Qiu, Q. Wu, C.-S. Ding, and M. Pedram, “Cycle-Accurate Macro-Models for RT-Level Power Analysis,” Proc. of Low-Power Electronics and Design, pp. 125-130, (1997).
    [22] A. Raghunathan, S. Dey, and N. K. Jha, “High-Level Macro-Modeling and Estimation Techniques for Switching Activities and Power dissipation,” IEEE Trans. on Very Large Scale Integration Systems, Vol. 11, No. 4, pp. 538-557, (Aug. 2003).
    [23] M.-Y. Sum, “RTL Power Estimation Using Power Mode Classification and Functional Weighting,” M.S. Thesis, National Tsing Hua University, Taiwan, (Jun. 2004).
    [24] K.-S. Chang, “Accurate RTL Power Estimation Linked with Standard Cell Power Characterization,” M.S. Thesis, National Tsing Hua University, Taiwan, (Jul. 2005).
    [25] M.-C. Li, “Extrapolation-Based Power Modeling for Memory Compilers Using MUX-Oriented Linear Regression,” M.S. Thesis, National Tsing Hua University, Taiwan, (Jul. 2007).
    [26] T.-Y. Tai, “Power Modes Classification for Dual-Power SRAM Based on MUX-Oriented Power Modeling with Leakage Issue,” M.S. Thesis, National Tsing Hua University, Taiwan, (Jan. 2009).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE