研究生: |
吳佳凌 Wu, Jia-Ling. |
---|---|
論文名稱: |
開發原位桌上型掃描/穿透式電子顯微鏡應用於奈米化學沉積與溶菌蛋白酶晶體觀測之流體載台 Development of Fluidic Holder for Desktop S/TEM for In-Situ Observation of Chemical Deposition and Lysozyme Crystal |
指導教授: |
陳福榮
Chen, Fu-Rong |
口試委員: |
曾繁根
Tseng, Fan-Gang 吳文偉 Wu, Wen-Wei |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 90 |
中文關鍵詞: | 掃描式電子顯微鏡 、掃描穿透式電子顯微鏡 、臨場觀測 、化學沉積 、溶菌蛋白酶晶體 |
外文關鍵詞: | Scanning Electron Microscope, Scanning Transmission Electron Microscope, In-situ, Chemical deposition, Lysozyme Crystal |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
臨場觀測先進技術與電子顯微鏡的搭配開啟科學界新穎且獨特的領域,此再研究以本實驗室研發之桌上型掃描/穿透式電子顯微鏡為基礎,以自製流體載台並搭配微機電製程技術,在微小腔體中建造了all in one的奈米級獨立實驗室,實現了液態的臨場觀測。本實驗研發兩種流體載具:
(1) SEM流體載台:
此載台有三個特點:使用單一具有可透射電子束之50nm氮化矽薄膜晶片,利用微機電製成具有低應力分佈之圓形觀測視窗;機械精度加工使流道至觀測視窗至液體厚度僅0.01~0.1mm;可自由切換封閉或流體兩個系統且簡易操作,成功通入硝酸銀溶液驗證此系統之可行性,以及觀察到電子束激發銻化銦奈米線產生電子電動對間接的使硝酸銀離子溶液中的銀還原之化學沉積現象。除此之外,應用於溶菌蛋白酶之結晶,雖然原子序低的組成使影像對比度較低,但可觀察到一點晶體邊緣。
(2) STEM流體載台:
因為穿透電子訊號比背向散射的成像有較好的對比度,因此在桌上型電子顯微鏡中發展STEM流體系統載台可為低原子序的生物樣品提供一液態環境。此載台結合MEMS製成與機械設計,其中一晶片上鍍有200nm鉻層限制液體厚度,且已在電鏡下觀察過流體通入並證實載台之可行性,未來預計可在濕式、低原子序的科學分析上有所貢獻。
The combination of advanced in-situ techniques and environmental electron microscope opens up a new era for us to explore the identifiable scientific issue. Based on the desktop scanning/transmission electron microscope developed by our group and further equipped with designed holder for fluid, we make the in-situ observation of fluid possible. In this study, two kinds of holder for fluid are invented:
(1) SEM fluid holder:
The holder mainly contains three characteristics: A circle observation window with lower stress distribution made by a bulk-micromachining process; the channel control by precise process and only 0.01~0.1 mm of the fluid thickness is allowed; this holder is able to transfer between close or flow system and easy to use. We prove the feasibility of this holder by successfully injecting the AgNO3 solution, and further observe that secondary electrons generated in InSb nanowire by the primary electron beam lead to electron mediated Ag deposition from AgNO3 solution. Moreover, we are trying to observe the Lysozyme crystal with smaller atomic number and we have successfully observed the periphery of it.
(2) STEM fluid holder:
Due to the image formation by signal of transmission electron has better contrast than signal of backscattered electron, the development of STEM liquid holder in desktop EM can provide a wet environment for observing the low atomic number bio-sample. Its combine with MEMS process, mechanism-design. The liquid thickness is limited by a chip with 200nm Cr spacer. Availability of its flow system is proven by observing the flowing process in desktop EM. Further, it will contribute for wet sample which has low atomic.
1. 王文軒, 發明與創新( 學生版). 2007.
2. Wei, Z. S., “光學顯微技術的新進展”. Spacetime 2013, vol. 6, 76-81.
3. Hawkes, P. W., Ernst Ruska. Physics Today. 1990, 43(7), p. 84.
4. Wells, O. C., Scanning Electron Microscopy. Journal of Vacuum Science & Technology 1965, 2(5): p. 285-.
5. 汪建民, 材料分析. 2001, p. 121-150.
6. Geisler-Lee, J.; Wang, Q.; Yao, Y.; Zhang, W.; Geisler, M.; Li, K.; Huang, Y.; Chen, Y.; Kolmakov, A.; Ma, X., Phytotoxicity, accumulation and transport of silver nanoparticles by Arabidopsis thaliana. Nanotoxicology 2012, 7 (3), 323-337.
7. Kolmakova, N.; Kolmakov, A., Scanning Electron Microscopy for in Situ Monitoring of Semiconductor−Liquid Interfacial Processes: Electron Assisted Reduction of Ag Ions from Aqueous Solution on the Surface of TiO2 Rutile Nanowire. The Journal of Physical Chemistry C 2010, 114 (40), 17233-17237.
8. Al-Asadi, A. S.; Zhang, J.; Li, J.; Potyrailo, R. A.; Kolmakov, A., Design and Application of Variable Temperature Setup for Scanning Electron Microscopy in Gases and Liquids at Ambient Conditions. Microscopy and Microanalysis 2015, 21 (3), 765-770.
9. Ito, T.; Hiziya, K., A Specimen Reaction Device for the Electron Microscope and its Applications. Journal of Electron Microscopy 1958, 6 (1), 4-8.
10. Baker, R. T. K.; Harris, P. S., Controlled atmosphere electron microscopy. Journal of Physics E: Scientific Instruments 1972, 5 (8), 793.
11. Parsons, D. F., Structure of Wet Specimens in Electron Microscopy. Science 1974, 186 (4162), 407-414.
12. Yoshinori Fujiyoshi, M. N., “Specimen-holding device for electron microscope”. U.S. Patent 5406087, 1995.
13. Kaznacheyev, K.; Osanna, A.; Winn, B., Sealed cell for in-water measurements. AIP Conference Proceedings 2000, 507 (1), 395-400.
14. Liu, K.-L.; Wu, C.-C.; Huang, Y.-J.; Peng, H.-L.; Chang, H.-Y.; Chang, P.; Hsu, L.; Yew, T.-R., Novel microchip for in situTEM imaging of living organisms and bio-reactions in aqueous conditions. Lab on a Chip 2008, 8 (11), 1915-1921.
15. Huang, T.-W.; Liu, S.-Y.; Chuang, Y.-J.; Hsieh, H.-Y.; Tsai, C.-Y.; Huang, Y.-T.; Mirsaidov, U.; Matsudaira, P.; Tseng, F.-G.; Chang, C.-S.; Chen, F.-R., Self-aligned wet-cell for hydrated microbiology observation in TEM. Lab on a Chip 2012, 12 (2), 340-347.
16. Yuk, J. M.; Park, J.; Ercius, P.; Kim, K.; Hellebusch, D. J.; Crommie, M. F.; Lee, J. Y.; Zettl, A.; Alivisatos, A. P., High-Resolution EM of Colloidal Nanocrystal Growth Using Graphene Liquid Cells. Science 2012, 336 (6077), 61-64.
17. Zhu, G.; Jiang, Y.; Huang, W.; Zhang, H.; Lin, F.; Jin, C., Atomic resolution liquid-cell transmission electron microscopy investigations of the dynamics of nanoparticles in ultrathin liquids. Chemical Communications 2013, 49 (93), 10944-10946.
18. Karni, V. B. A. N. Y. K. O. G. D. S. O. Z. Y., “Methods for SEM inspection of fluid containing samples”. U.S. patent 7230242 B2 2007.
19. Jonge, N. d.; Peckys, D. B.; Kremers, G. J.; Piston, D. W., Electron microscopy of whole cells in liquid with nanometer resolution. Proceedings of the National Academy of Sciences 2009, 106 (7), 2159-2164.
20. Ring, E. A.; de Jonge, N., Microfluidic System for Transmission Electron Microscopy. Microscopy and Microanalysis 2010, 16 (5), 622-629.
21. Hsieh, T.-H.; Chen, J.-Y.; Huang, C.-W.; Wu, W.-W., Observing Growth of Nanostructured ZnO in Liquid. Chemistry of Materials 2016, 28 (12), 4507-4511.
22. Liu, S.-Y.; Kundu, P.; Huang, T.-W.; Chuang, Y.-J.; Tseng, F.-G.; Lu, Y.; Sui, M.-L.; Chen, F.-R., Quasi-2D liquid cell for high density hydrogen storage. Nano Energy 2017, 31, 218-224.
23. Maruyama, Y.; Ebihara, T.; Nishiyama, H.; Konyuba, Y.; Senda, M.; Numaga-Tomita, T.; Senda, T.; Suga, M.; Sato, C., Direct Observation of Protein Microcrystals in Crystallization Buffer by Atmospheric Scanning Electron Microscopy. International Journal of Molecular Sciences 2012, 13 (8), 10553-10567.
24. Lee, W. S.; Lee, S. S., Piezoelectric microphone built on circular diaphragm. Sensors and Actuators A: Physical 2008, 144 (2), 367-373.