簡易檢索 / 詳目顯示

研究生: 歐朝陽
Ou, Chao-Yang
論文名稱: 以感應馬達渦輪模擬器驅動之永磁同步發電機
PERMANENT-MAGNET SYNCHRONOUS GENERATORS DRIVEN BY INDUCTION MOTOR BASED TURBINE EMULATOR
指導教授: 廖聰明
Liaw, Chang-Ming
口試委員: 曾萬存
Tseng, Wan-Tsun
趙貴祥
Chao, Kuei-Hsiang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 111
中文關鍵詞: 聯網微電網風渦輪模擬器風力發電機感應馬達間接式磁場導向永磁同步發電機最大功率追蹤切換式整流器變頻器
外文關鍵詞: grid-connected, microgrid, wind turbine emulator, wind generator, induction motor, indirect field-orientation, permanent-magnet synchronous generator, maximum power point tracking, switch-mode rectifier, inverter
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在開發一以感應馬達渦輪模擬器驅動之風力永磁同步發電機。最大風能擷取及雙向聯網操作可藉由適當的背對背轉換器電路及控制器設計實現之。
    首先介紹所建之間接式磁場導向感應馬達驅動系統及風渦輪模擬器。透過適當設定間接式磁場導向控制中之額定磁通電流命令與轉差角速度命令,使感應馬達獲得良好之驅控性能,所提測試方式可更準確地估得馬達之關鍵參數。所開發之感應馬達驅動系統在速度模式下,可做為傳統發電機之渦輪機使用。另外,在轉矩模式下,可實現忠實之風渦輪模擬器。可產出於不同風速下所設計之轉矩-速度及功率-速度曲線,驅動機械耦接之風力發電機。
    接著,建立由感應馬達渦輪模擬器驅動之永磁同步發電機。在傳統發電機下以電壓模式操作,經由切換式整流器建立調節性良好之直流鏈電壓。而做為風渦輪模擬器驅動之風力發電機,採用擾動觀察法達成最大功率追蹤,以擷取風速變化下之最大風能。
    最後,以所設計之一雙變頻器實現雙向聯網操作。在電網至微電網模式下,微電網可從電網獲取能量,而具良好之入電電力品質。反之,可進行微電網至電網之操作,藉由所提控制,可將預設之實功及虛功功率回送至電網。


    This thesis develops a permanent-magnet synchronous generator (PMSG) driven by the induction motor (IM) based turbine emulator. Through the proper schematic and controller designs for the equipped back-to-back converter, the maximum wind power extraction and the bidirectional grid-connected operations are achieved.
    The indirect field-oriented (IFO) induction motor drive and the wind turbine emulator (WTE) are first presented. Satisfactory IM driving performance is obtained via properly setting the rated flux current command and slip angular speed command in the IFO mechanism. The employed motor parameters are more accurately estimated by the proposed testing approach. The developed IM drive can be controlled to act as a traditional turbine in speed mode for conventional generators. On the other hand, by operating under torque mode, a faithful wind turbine emulator is established. The designed torque-speed and power-speed curves under varied wind speed are generated to drive the mechanically coupled wind generator.
    Next, the PMSG with followed switch-mode rectifier (SMR) driven by the IM based turbine emulator is established. It is operated under voltage mode for conventional generator. Well-regulated DC-bus voltage is established. As to the wind generator driven by the WTE, the maximum power point tracking (MPPT) via perturb and observe method is made to extract the maximum wind power under varied wind speed.
    Finally, for conducting the grid-connected operation, a bidirectional grid-connected inverter is designed and implemented. In grid-to-microgrid (G2M) operation mode, the microgrid can be powered from the grid with good line drawn power quality. Conversely, the microgrid-to-grid (M2G) operation can also be conductible. The preset real and reactive powers can be sent back to the grid.

    ABSTRACT i ACKNOWLEDGEMENT ii LIST OF CONTENTS iii LIST OF FIGURES viii LIST OF TABLES xiv LIST OF SYMBOLS xv LIST OF ABBREVIATIONS xxii CHAPTER 1 INTRODUCTION 1 1.1 Motivation 1 1.2 Literature Review 1 1.3 Thesis Organization 3 CHAPTER 2 OVERVIEW OF MICROGRID AND WIND POWER GENERATION TECHNOLOGIES 5 2.1 Introduction 5 2.2 Micro-grid System 5 2.3 Wind Generator System 5 2.3.1 Wind Turbines 5 2.3.2 Governing Equations and Power Characteristics 7 2.3.3 Typical Wind Generators 9 2.4 Employed Wind Turbine Prime Mover 10 2.4.1 Induction Motor Drive 10 2.4.2 Estimation of IM Equivalent Circuit Parameters 18 2.4.3 Measured Results 20 2.4.4 Field-current Command Setting 22 2.4.5 Key issues of an IFO IM drive 24 2.5 Permanent Magnet Synchronous Machine 25 2.5.1 Structures 25 2.5.2 Modeling of PMSM 26 2.5.3 Measurements of Motor Parameters 29 2.5.4 Key Issues of Wind PMSG 31 2.5.5 Motor Efficiency Standard 32 2.6 Interface Converters for Wind Generator 33 2.6.1 Three-phase SMR 33 2.6.2 Governing Equations 35 2.7 Three-phase Inverters 37 CHAPTER 3 INDUCTION MOTOR DRIVEN PRIME MOVER EMULATOR 39 3.1 Introduction 39 3.2 The Developed IFO IM Drive 39 3.2.1 System Configuration and Functional Statements 39 3.2.2 IM Ratings 41 3.2.3 Voltage-source Inverter 41 3.2.4 Sensing and Interface Circuits 41 3.2.5 DSP TMS320F28379D 43 3.2.6 Flowcharts of Control Routines 44 3.3 Control Schemes 45 3.3.1 Current Controller 45 3.3.2 Speed Controller 45 3.4 Performance Evaluation 48 3.4.1 Starting Characteristics 48 3.4.2 Speed Dynamic Responses 48 3.4.3 Steady-state Characteristics 49 3.4.4 Acceleration/Deceleration and Reversible Operation 50 3.5 Observed Torque Control 50 3.5.1 Dynamic Model Estimation 51 3.5.2 Torque Controller Design 53 3.5.3 Torque Robust Error Cancellation Controller (TRECC) 54 3.6 Development of IFO IM Driven WTE 55 3.6.1 Modeling Wind Turbine Characteristics 55 3.6.2 Simulated and Experimental Results of the Developed IFO IM Driven WTE 57 CHAPTER 4 DEVELOPMENT AND CONTROL OF PERMANENT-MAGNET SYNCHRONOUS GENERATOR 60 4.1 Introduction 60 4.2 System Configuration and Functional Statements 60 4.3 Power Circuit 61 4.3.1 SPMSG Ratings 61 4.3.2 Circuit Operation 61 4.3.3 Design of Circuit Components 64 4.4 Fixed Voltage SPMSG 66 4.4.1 SPMSG Dynamic Model 66 4.4.2 Current Control Scheme 66 4.4.3 Voltage Control Scheme 67 4.5 Experimental Results of the WTE Driven SPMSG 70 4.5.1 Steady-state Characteristics 70 4.5.2 Measured Hall Signal and Speed 72 4.5.3 Dynamic Responses 73 4.6 Maximum Power Point Tracking Control of the WTE Driven SPMSG 74 4.6.1 Control Scheme 74 4.6.2 Maximum Power Point Tracking Control Algorithm 74 4.6.3 Experimental Evaluation 76 4.6.4 Dynamic Characteristics 78 4.7 Energy Conversion Efficiency Assessment 80 CHAPTER 5 GRID-CONNECTED OPERATION OF THE ESTABLISHED WIND GENERATOR 84 5.1 Introduction 84 5.2 System Configuration and Functional Statements 84 5.3 Power Circuit of Grid-connected Inverter 84 5.3.1 Circuit Analysis 85 5.3.2 Design of Circuit Components 88 5.4 Control Schemes 90 5.4.1 Utility Grid Voltage Sensing Circuits 90 5.4.2 Phase-locked Loop Mechanism 90 5.4.3 Current Control Scheme 90 5.4.4 Power Control Scheme 92 5.4.5 Voltage Control Scheme 92 5.5 Experimental Verification of the Three-phase Full-bridge SMR 94 5.6 Back to Back Converter Operation Assessment 101 CHAPTER 6 CONCLUSIONS 105 REFERENCES 106

    A. Micro-grid System
    [1] I. Tank and S. Mali, “Renewable based DC microgrid with energy management system,” in Proc. IEEE SPICES., pp. 1-5, 2015.
    [2] L. E. Zubieta, “Power management and optimization concept for DC microgrids,” in Proc. IEEE ICDCM., pp. 81-85, 2015.
    [3] F. Tooryan and E. R. Collins, “Optimum size and placement of distributed generators in microgrid based on reliability concept,” in Proc. IEEE PECI., pp. 1-6, 2018.
    [4] P. Molotov, A. Vaskov, and M. Tyagunov, “Modeling processes in microgrids with renewable energy sources,” in Proc. IEEE UralCon., pp. 203-208, 2018.
    [5] S. M. Hashemi-Toghroljerdi and A. Ebrahimi, “Impact of wind power penetration on transients and dynamics of micro-grids due to wind turbine structures and operation constraints,” in Proc. IEEE PEC., pp. 1581-1585, 2008.
    [6] R. Davies, M. Sumner, and E. Christopher, “The development of real-time wind turbine emulation for microgrid research,” in Proc. IEEE EPE/PEMC., pp. DS2d.3-1-DS2d.3-6, 2012.
    [7] R. Rostami and H. Hosseinnia, “Energy management of reconfigurable distribution system in present of wind turbine by considering several kinds of demands,” in Proc. IEEE IWEC., pp. 1-4, 2021.
    B. Induction Motor Drives
    [8] B. K. Bose, “Adjustable speed AC drives—a technology status review,” in Proc. IEEE, vol. 70, no. 2, pp. 116-135, Feb. 1982.
    [9] P. C. Krause, O. Wasynczuk, S. D. Sudhoff, and S. Pekarek, Analysis of electric machinery and drive systems, 2nd Ed., New York: Wiley-IEEE, 2002.
    [10] A. Munoz-Garcia, T. A. Lipo, and D. W. Novotny, “A new induction motor V/f control method capable of high-performance regulation at low speeds,” IEEE Trans. Ind. Appl, vol. 34, no. 4, pp. 813-821, July-Aug. 1998.
    [11] S. Srilad, S. Tunyasrirut, and T. Suksri, “Implementation of a scalar controlled induction motor drives,” in Proc. IEEE SICE-ICASE, pp. 3605-3610, 2006.
    [12] D. Karthik and T. R. Chelliah, “Analysis of scalar and vector control based efficiency-optimized induction motors subjected to inverter and sensor faults,” in Proc. IEEE ICACCCT, pp. 462-466, 2016.
    [13] T. A. Lipo and K. C. Chang, “A new approach to flux and torque-sensing in induction machines,” IEEE Trans. Ind. Appl, vol. IA-22, no. 4, pp. 731-737, July 1986, doi: 10.1109/TIA.1986.
    [14] D. S. Zinger, F. Profumo, T. A. Lipo, and D. W. Novotny, “A direct field-oriented controller for induction motor drives using tapped stator windings,” IEEE Trans. Power Electron, vol. 5, no. 4, pp. 446-453, Oct. 1990.
    [15] C.M. Liaw and Y.S. Kung, “Design and implementation of a high-performance field-oriented induction motor drive,” IEEE Trans. Ind. Electron, vol. 38, no. 4, pp. 275-282, Aug. 1991.
    [16] J. A. Santisteban and R. M. Stephan, “Vector control methods for induction machines: an overview,” IEEE Trans. Educ, vol. 44, no. 2, pp. 170-175, May 2001.
    [17] M. Shin and D. Hyun, “Online identification of stator transient inductance in rotor-flux-oriented induction motor drive,” IEEE Trans. Ind. Electron, vol. 54, no. 4, pp. 2018-2023, Aug. 2007.
    [18] M. Popescu, A. Bitoleanu, and C. V. Suru, “Synthesis of rotor field-orientation control for induction traction motor,” IEEE ICATE, pp. 1-6, 2021.
    [19] S. K. Kakodia and G. Dynamina, “A comparative study of DFOC and IFOC for IM drive,” in Proc. IEEE ICMICA, pp. 1-5, 2020.
    [20] Seok, Moon, and Sul, “Induction machine parameter identification using PWM inverter at standstill,” IEEE Trans. Energy Convers, vol. 12, no. 2, pp. 127-132, June 1997.
    [21] A. Gastli, “Identification of induction motor equivalent circuit parameters using the single-phase test,” IEEE Trans. Energy Convers, vol. 14, no. 1, pp. 51-56, March 1999.
    [22] J. K. Seok and S. K. Sul, “Induction motor parameter tuning for high-performance drives,” IEEE Trans. Ind. Appl, vol. 37, no. 1, pp. 35-41, Jan.-Feb. 2001.
    [23] S. D. Sudhoff, D. C. Aliprantis, B. T. Kuhn, and P. L. Chapman, “Experimental characterization procedure for use with an advanced induction machine model,” IEEE Trans. Energy Convers, vol. 18, no. 1, pp. 48-56, March 2003.
    [24] A. Boglietti, A. Cavagnino, L. Ferraris, and M. Lazzari, “Induction motor equivalent circuit including the stray load losses in the machine power balance,” IEEE Trans. Energy Convers, vol. 23, no. 3, pp. 796-803, Sept. 2008.
    [25] J. Tang, Y. Yang, L. Diao, J. Chen, Y. Chang, and Z. Liu, “Parameter identification of induction motors for railway traction applications,” in Proc. IEEE ECCE, 2018.
    [26] I. Miki, O. Nakao, and S. Nishiyama, “A new simplified current control method for field oriented induction motor drives,” in Proc. IEEE IAS, pp. 390-395 vol.1 1989.
    [27] M. P. Kazmierkowski and L. Malesani, “Current control techniques for three-phase voltage-source PWM converters: a survey,” IEEE Trans. Ind. Electron, vol. 45, no. 5, pp. 691-703, Oct. 1998.
    [28] D. G. Holmes, B. P. McGrath, and S. G. Parker, “Current regulation strategies for vector-controlled induction motor drives,” IEEE Trans. Ind. Electron, vol. 59, no. 10, pp. 3680-3689, Oct. 2012.
    [29] R. D. Lorenz, T. A. Lipo, and D. W. Novotny, “Motion control with induction motors,” in Proc. IEEE, vol. 82, no. 8, pp. 1215-1240, Aug. 1994.
    [30] Liaw and Lin, “A robust speed controller for induction motor drives,” IEEE Trans. Ind. Electron, vol. 41, no. 3, pp. 308-315, June 1994.
    [31] Jung and Nam, “A dynamic decoupling control scheme for high-speed operation of induction motors,” IEEE Trans. Ind. Electron, vol. 46, no. 1, pp. 100-110, Feb. 1999.
    [32] Liaw, Lin, and Chao, “A VSS speed controller with model reference response for induction motor drive,” IEEE Trans. Ind. Electron, vol. 48, no. 6, pp. 1136-1147, Dec. 2001.
    [33] F. Barrero, A. Gonzalez, A. Torralba, E. Galvan, and L. G. Franquelo, “Speed control of induction motors using a novel fuzzy sliding-mode structure,” IEEE Trans. Fuzzy Syst, vol. 10, no. 3, pp. 375-383, June 2002.
    [34] J. Talla, V. Q. Leu, V. Šmídl, and Z. Peroutka, “Adaptive Speed Control of Induction Motor Drive With Inaccurate Model,” IEEE Trans. Ind. Electron, vol. 65, no. 11, pp. 8532-8542, Nov. 2018.
    [35] G. S. Buja and M. P. Kazmierkowski, “Direct torque control of PWM inverter-fed AC motors - a survey,” IEEE Trans. Ind. Electron, vol. 51, no. 4, pp. 744-757, Aug. 2004.
    [36] Z. Sorchini and P. T. Krein, “Formal Derivation of direct torque control for induction machines,” IEEE Trans. Power Electron, vol. 21, no. 5, pp. 1428-1436, Sept. 2006.
    [37] T. Rui, L. Zhang, C. Zhou, and M. Zhang, “Torque closed-loop vector control of induction motor based on stator flux observer,” in Proc. IEEE ICIEA, pp. 1629-1632, 2015.
    C. PMSG Wind Generator
    [38] M. Q. Duong, K. H. Le, F. Grimaccia, S. Leva, M. Mussetta, and R. E. Zich, “Comparison of power quality in different grid-integrated wind turbines,” in Proc. IEEE ICEM, pp. 1-6, 2010.
    [39] M. Kimura et al, “A study of permanent magnet rotor for large scale wind turbine generator system,” in Proc. IEEE ICEM., pp. 1161-117, 2012.
    [40] M. Hsieh, F. Hsu, and D. G. Dorrell, “Winding changeover permanent-magnet generators for renewable energy applications,” IEEE Trans. Magnet, vol. 48, no. 11, pp. 4168-4171, Nov. 2012.
    [41] Y. Park, S. Jang, J. Choi, J. Choi, and D. You, “Characteristic analysis on axial flux permanent magnet synchronous generator considering wind turbine characteristics according to wind speed for small-scale power application,” IEEE Trans. Magnet, vol. 48, no. 11, pp. 2937-2940, Nov. 2012.
    [42] S. Benelghali, M. E. H. Benbouzid and J. F. Charpentier, “Comparison of PMSG and DFIG for marine current turbine applications,” in Proc. IEEE ICHQP, pp. 448-452, 2014.
    [43] N. Madani, A. Cosic, and C. Sadarangani, “A permanent magnet synchronous generator for a small scale vertical axis wind turbine,” in Proc. IEEE IEMDC, pp. 48-52, 2015.
    [44] H. Ahuja, R. Virmani, and A. Ahuja, “Performance comparison of most prevalent wind energy conversion systems,” in Proc. IEEE IICPE, pp. 1-6, 2016.
    [45] A. Beainy, C. Maatouk, N. Moubayed, and F. Kaddah, “Comparison of different types of generator for wind energy conversion system topologies,” in Proc. IEEE REDEC, pp. 1-6, 2016.
    [46] I. Nacu, A. Munteanu, H. Heireche, B. Virlan, and B. Anghel, “Thermal analysis of a low speed permanent magnet synchronous generator for wind turbine applications,” in Proc. IEEE EPE, pp. 0906-0909, 2018.
    [47] C. He and T. Wu, “Analysis and design of surface permanent magnet synchronous motor and generator,” in Proc. IEEE CES, vol. 3, no. 1, pp. 94-100, March 2019.
    [48] S. ÇELİKDEMİR and M. ÖZDEMİR, “Wind power plant application with permanent magnet synchronous generator,” in Proc. IEEE ICPEA, pp. 1-4, 2019.
    [49] M. A. Dranca, M. Chirca, S. Breban, and D. Fodorean, “Comparative design analysis of two modular permanent magnet synchronous generators,” in Proc. IEEE ISEEE, pp. 1-5, 2021.
    [50] F. Deng and Z. Chen, “Power control of permanent magnet generator based variable speed wind turbines,” in Proc. IEEE ICEMS, pp. 1-6, 2009.
    [51] Han and Chen, “A novel control strategy of wind turbine MPPT implementation for direct-drive PMSG wind generation imitation platform,” in Proc. IEEE IPEMC, pp. 2255-2259, 2009.
    [52] L. Xiao, S. Huang, K. Huang, Z. Chen, S. Xiong and J. Tan, “Space vector modulation based on constant switching frequency direct power control for direct-drive permanent magnet synchronous generator,” in Proc. IEEE IPEMC, pp. 574-577, 2010.
    [53] K. Patil and B. Mehta, “Modeling and simulation of variable speed wind turbine with direct drive permanent magnet synchronous generator” in Proc. IEEE ICGCCEE, pp. 1-6, 2014.
    [54] Y. Yasa and E. Mese, “Design and analysis of generator and converters for outer rotor direct drive gearless small-scale wind turbines,” in Proc. IEEE ICRERA, pp. 689-694, 2014.
    [55] L. Saihi and A. Boutera, “Robust control of a variable-speed wind turbine with fixed pitch angle and strategy MPPT control associated on a PMSG,” in Proc. IEEE ICMIC, pp. 326-331, 2016.
    [56] L. Na and Z. De-min, “Research on MPPT control based on combined algorithm of perturbation observation,” in Proc. IEEE CCDC, pp. 6989-6994, 2017.
    [57] E. M. Youness and Z. Othmane, “Dynamic modeling and control of a wind turbine with MPPT control connected to the grid by using PMSG,” in Proc. IEEE ATSIP, pp. 1-6, 2017.
    D. Grid-Connected Operations
    [58] Tran, Chun, Lee, Kim, and Nho, “Control for grid-connected and stand-alone operations of three-phase grid-connected inverter,” in Proc. IEEE ICRERA, pp. 1-5, 2012.
    [59] H. Li, “System level wind turbine controls with seamless transitions between standalone and grid connected mode,” in Proc. IEEE ICSGSC, pp. 1-5, 2012.
    [60] T. Tran, T. Chun, H. Lee, H. Kim, and E. Nho, “PLL-based seamless transfer control between grid-connected and islanding modes in grid-connected inverters,” IEEE Trans. Power Electron, vol. 29, no. 10, pp. 5218-5228, Oct. 2014.
    [61] H. Li, “An improved grid-connected control strategy of double PWM direct-drive permanent-magnet synchronous wind generators,” in Proc. IEEE ICSGSC, pp. 105-110, 2018.
    [62] L. Arnedo, S. Dwari, S. Motapon, and V. Blasko, “An improved grid-connected control strategy of double PWM direct-drive permanent-magnet synchronous wind generators,” in Proc. IEEE PEMWA, pp. 105-110, 2018.
    [63] D. Sun, F. Zhao, H. Liu, Y. Wang, P. Song, and X. Wang, “Influence of virtual inertia in wind turbines on large scale power grid frequency characteristics,” in Proc. IEEE RPG., pp. 1-6, 2019.
    [64] Y. Situ, R. Hu, Z. Qiu, Z. Chen, and C. Liang, "Analysis of the influence of grid-connected transmission and distribution of multi-source small power on the operation of power grid," in Proc. IEEE FoNeS-AIoT, pp. 33-37, 2021.
    [65] S. P. Gawande, N. A. Kubde, M. S. Joshi, and B. S. Sudame, “Reactive power compensation of wind energy distribution system using distribution static compensator (DSTATCOM),” in Proc. IEEE IICPE, pp. 1-5, 2012.
    [66] G. Lammert, T. Heß, M. Schmidt, P. Schegner, and M. Braun, “Dynamic grid support in low voltage grids — fault ride-through and reactive power/voltage support during grid disturbances,” in Proc. IEEE PSCC, pp. 1-7, 2014.
    [67] Keyuan Huang, Shoudao Huang, Feng She, Baimin Luo, and Luoqiang Cai, “A control strategy for direct-drive permanent-magnet wind-power generator using back-to-back PWM converter,” in Proc. IEEE ICEMS, pp. 2283-2288, 2008.
    [68] Shu-ju, Kong De-guo, and Xu Hong-hua, “Research on the application of parallel back-to-back PWM converter on direct-drive wind power system,” in Proc. IEEE DRPT, pp. 2504-2508, 2008.
    [69] W. Xin, C. Mingfeng, Q. Li, C. Lulu, and Q. Bin, “Control of direct-drive permanent-magnet wind power system grid-connected using back-to-back PWM converter,” in Proc. IEEE ISDEA, pp. 478-481, 2013.
    [70] F. Hassanzadeh, H. Sangrody, A. Hajizadeh, and S. Akhlaghi, “Back-to-back converter control of grid-connected wind turbine to mitigate voltage drop caused by faults,” in Proc. IEEE NAPS, pp. 1-6, 2017.
    [71] M. Quraan, Q. Farhat, and M. Bornat, “A new control scheme of back-to-back converter for wind energy technology,” in Proc. IEEE ICRERA, pp. 354-358, 2017.
    [72] Z. Zhang, Z. Li, M. P. Kazmierkowski, J. Rodríguez, and R. Kennel, “Robust predictive control of three-level NPC back-to-back power converter PMSG wind turbine systems with revised predictions,” IEEE Trans. Power Electron, vol. 33, no. 11, pp. 9588-9598, Nov. 2018.
    E. Switch-Mode Rectifiers (SMRs) and Voltage Source Inverters (VSIs)
    [73] B. N. Singh, A. Chandra, K. Al-Haddad, A. Pandey, and D. P. Kothari, “A review of three-phase improved power quality AC-DC converters,” IEEE Trans. Ind. Electron., vol. 51, no. 3, pp. 641-660, June 2004.
    [74] A. H. Bhat and P. Agarwal, “A comparative evaluation of three-phase high power factor boost converters for power quality improvement,” in Proc. IEEE ICIT, pp. 546-551, 2006.
    [75] J. W. Kolar and T. Friedli, “The essence of three-phase PFC rectifier systems—part I,” IEEE Trans. Power Electron, vol. 28, no. 1, pp. 176-198, Jan. 2013.
    [76] T. Friedli, M. Hartmann, and J. W. Kolar, “The essence of three-phase PFC rectifier systems—part II,” IEEE Trans. Power Electron, vol. 29, no. 2, pp. 543-560, Feb. 2014.
    [77] R. -L. Lin and H. -I. Cheng, “Adaptive harmonic injection mechanism for single-switch three-phase DCM boost rectifier,” in Proc. IEEE ECCE, pp. 6786-6789, 2018.
    [78] S. A. Khanday, O. C. Sekhar, and T. N. Mir, “Comparative study of three phase AC/AC indirect matrix converters: a review,” in Proc. IEEE ICONAT, pp. 1-6, 2022.
    [79] P. N. Enjeti and W. Shireen, “A new technique to reject DC-link voltage ripple for inverters operating on programmed PWM waveforms,” IEEE Trans. Power Electron, vol. 7, no. 1, pp. 171-180, Jan. 1992.
    [80] J. Guo, J. Ye, and A. Emadi, “DC-link current and voltage ripple analysis considering antiparallel diode reverse recovery in voltage source inverters,” IEEE Trans. Power Electron, vol. 33, no. 6, pp. 5171-5180, June 2018.
    [81] S. M. Tayebi, H. Hu, and I. Batarseh, “Advanced DC-Link voltage regulation and capacitor optimization for three-phase microinverters,” IEEE Trans. Ind. Electron, vol. 66, no. 1, pp. 307-317, Jan. 2019.
    [82] Wang, Ye, Sinha and Yuan, “Output filter design for a grid-interconnected three-phase inverter,” in Proc. IEEE PESC, 2003, pp. 779-784 vol.2.
    [83] Erika Twining and D. G. Holmes, “Grid current regulation of a three-phase voltage source inverter with an LCL input filter,” IEEE Trans. Power Electron, vol. 18, no. 3, pp. 888-895, May 2003.
    [84] D. Solatialkaran, F. Zare, T. K. Saha, and R. Sharma, “A novel approach in filter design for grid-connected inverters used in renewable energy systems,” IEEE Trans. Sustain. Energy, vol. 11, no. 1, pp. 154-164, Jan. 2020.
    [85] A. Nabae, I. Takahashi, and H. Akagi, “A new neutral-point-clamped PWM inverter,” IEEE Trans. Ind. Appl, vol. IA-17, no. 5, pp. 518-523, Sept. 1981.
    [86] J. M. Erdman, R. J. Kerkman, D. W. Schlegel, and G. L. Skibinski, “Effect of PWM inverters on AC motor bearing currents and shaft voltages,” IEEE Trans. Ind. Appl, vol. 32, no. 2, pp. 250-259, March-April 1996.
    [87] Y. Sozer, D. A. Torrey and S. Reva, “New inverter output filter topology for PWM motor drives,” IEEE Trans. Power Electron, vol. 15, no. 6, pp. 1007-1017, Nov. 2000.
    [88] D. M. Brod and D. W. Novotny, “Current control of VSI-PWM inverters,” IEEE Trans. Ind. Appl., vol. IA-21, no. 3, pp. 562-570, May 1985.
    [89] T. M. Rowan and R. J. Kerkman, “A new synchronous current regulator and an analysis of current-regulated PWM inverters,” IEEE Trans. Ind. Appl, vol. IA-22, no. 4, pp. 678-690, July 1986.
    F. SPWM Modulation Techniques
    [90] A. M. Hava, R. J. Kerkman, and T. A. Lipo, “Simple analytical and graphical methods for carrier-based PWM-VSI drives,” IEEE Trans. Power. Electron, vol. 14, no. 1, pp. 49-61, Jan. 1999.
    [91] Y. Zhao, T. Adamson, J. C. Balda, and Y. Zhang, “A frequency-modulated space vector pulse-width modulation for ripple current control of permanent-magnet motor drives,” IEEE ECCE, pp. 6578-6584, 2018.
    [92] B. Tan, Z. Gu, K. Shen, and X. Ding, “Third harmonic injection SPWM method based on alternating carrier polarity to suppress the common mode voltage,” in Proc. IEEE Access, vol. 7, pp. 9805-9816, 2019.
    G. Others
    [93] Texas Instruments Inc. “TMS320F2837xD Dual-Core Microcontrollers”, TMS320F28379D data sheet, December 2013 [Revised February, 2021], Available: https://www.ti.com/lit/ds/symlink/tms320f28379d.pdf.

    QR CODE