研究生: |
簡偉智 KAN WAI CHI |
---|---|
論文名稱: |
基於IEEE 802.16j多躍式轉傳網路之換手次數最小化中繼站分群演算法及高效能無線電資源排程策略 A Handoff-Minimizing RS Grouping Algorithm with Efficient Radio Resource Scheduling Policies in IEEE 802.16j Multihop Relay Network |
指導教授: |
楊舜仁
Shun-Ren Yang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 資訊工程學系 Computer Science |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 中文 |
論文頁數: | 63 |
中文關鍵詞: | 分群演算法 、多躍網路 、中繼技術 、無線資源排程 、全球微波存取互通介面 |
外文關鍵詞: | Grouping algorithm, IEEE 802.16j, multihop relay, scheduling policy, WiMAX |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
目前IEEE 802.16組織已經開發出IEEE 802.16j多躍轉傳標準以提升IEEE 802.16e網路效能,但由於引進IEEE 802.16j標準將造成一些在原有IEEE 802.16e中不存在的效能下降,例如低頻寛使用率及頻繁換手等問題,因此IEEE 802.16j標準提出了RS分群機制(RS Grouping)。在此論文中,我們注重在RS分群中的系統傳輸量及換手次數等效能提升,基於使用者隨機移動的特性,我們設計了一個換手次數最少化的RS分群演算法(Handoff-Minimizing RS Grouping Algorithm),其方法是使用低換手機率的群組形狀來進行分群,也就是使用群組中各RS之相交邊最多的群組形狀,只要指定群組大小,系統的整體換手次數將會減到最少。此外,我們提出流量優先(through-first, TF)及延遲優先(delay-first, DF)兩種集中式下傳排程策略(centralize downlink scheduling policies),其目標分別是希望最大化系統傳輸量及最小化平均延遲,在TF排程策略下,系統中封包佇列大小越大的使用者將有越高的優先權進行資料傳送,而DF排程策略則安排封包佇列等候時間越大的使用者有越高的優先權。實驗結果顯在適當的分群結果下,透過結合我們所提出的RS分群演算及TF/DF集中式排程策略,系統的傳輸量、延遲時間及換手次數等效能指標將有顯著明顯的改善,而DF策略不僅能使一般延遲減到最小,而且能為不同負載量的用戶提供更公平的資源分配。
The IEEE 802.16j MR standard has been developed to provide performance enhancement to the existent IEEE 802.16e network. However, the issues such as frequent handoffs and low spectrum utilization which are not encountered in IEEE 802.16e may be incurred in IEEE 802.16j. The RS grouping is one optional mechanism in the IEEE 802.16j MR standard to overcome these problems. In the thesis, we are interested in investigating the RS grouping performance enhancement in terms of throughput and handoff frequency. Based on Random-Walk mobility model, this thesis designed a Handoff-Minimizing RS Grouping Algorithm by utilizing the grouping patterns resulting in lower handoff probability, that is the pattern with more inner-boundaries among the patterns with the same preferred group size. The simulation results show that the handoff frequency of the considered MR network can be minimized using our grouping algorithm when the preferred group size is given, and thus verify our theoretical analysis. In addition, we proposed two centralized scheduling policies, the throughput-first (TF) and the delay-first (DF) policies, which object to maximize the system throughput and minimize average delay, respectively. By integrating our RS grouping algorithm and centralized scheduling algorithm, the simulation results show that the throughput performance are gradually increased under both the TF and the DF policies while the considered group size increased, which is due to the lower packet loss from frequent handoffs problem. Moreover, we show that the DF policy not only can minimize the average delay, but also provide the fairness property among different loaded users.
[1] Harmonized contributino on 802.16j (mobile multihop relay) usage models. IEEE
802.16j-06/015 http://ieee802.org/16/relay/index.html, September 2006.
[2] Mobile WiMAX Part I: A Technical Overview and Performance Evaluation. WiMAX
Forum, February 2006.
[3] Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems
Amendment 2: Physical and Medium Access Control Layers for Combined Fixed
and Mobile Operation in Licensed Bands. IEEE Computer Society and the IEEE
Microwave Theory and Techniques Society, February 2006.
[4] B. Can, H. Yanikomeroglu, FA Onat, E De Carvalho, H. Yomo. E±cient Cooperative
Diversity Schemes and Radio Resource Allocation for IEEE 802.16j. IEEE Wireless
Communications and Networking Conference (WCNC), pages 36{41, April 2008.
[5] F. Atay Onat, A. Adinoyi, Y. Fan, H. Yanikomeroglu, and J. S. Thompson. Optimum
Threshold for SNR-based Selective Digital Relaying Schemes in Cooperative Wireless
Networks. IEEE Wireless Communications and Networking Conference (WCNC),
March 2007.
[6] G. Song, Y. Li, L.Cimini Jr, and H. Zheng. Joint channel-aware and queue-aware
data scheduling in multiple shared wireless shcanels. IEEE Wireless Communications
and Networking Conference (WCNC), 2004.
[7] H. Luo, R.Ramjee, P.Sinha, L.Li, and S. Lu. UCAN: A uni‾ed cellular and
ad-hocnetwork architecture. Proc. Int. Conf. Mobile Computing and Network-
ing(Mobicom), pages 353{367, March 2003.
[8] H. Viswanathan, S. Mukherjee. Performance of cellular networks with relays and
centralized scheduling. IEEE Trans. Wireless Commun., 2005.
[9] H. Wu, C.Qia, S.De, and O. Tonguz. Integrated cellular and ad hoc relaying systems:
iCAR. IEEE J. Sel. Areas Commun., 19:2105{2115, October 2001.
[10] I. Hammerstrom, M. Kuhn, and A. Wittneben. Channel Adaptive Scheduling for
Cooperative Relay Networks. IEEE Vehicular Technology Conference, 4:2784{2788,
Fall 2004.
[11] IEEE 802.16j/D4. Draft IEEE Standard for Local and Metropolitan Area NetworksA
Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access SystemsA
Multihop Relay Speci‾cation. IEEE Std 802.16j, April 2008.
[12] J. Laneman, D. Tse, and G. Wornell. Cooperative diversity in wireless networks:
E±cient protocols and outage behavior. IEEE Trans. Inform. Theory, vol. 50, no.
12, pages 3062{3080, April 2004.
[13] L. Kleinrock. Queueing Systems, volume 1. John Wiley and Sons, 1975.
[14] J. Silvester L. Kleinrock. Spatial reuse in multihop packet radio networks. Proceedings
of the IEEE, 75(1):156{167, January 1987.
[15] L. Tassiulas, A. Ephremides. Stability Properties of Constrained Queueing Systems
and Scheduling Policies for Maximum Throughput in Multihop radio Networks. IEEE
Trans. Autom. Control, 1992.
[16] Y. Shun-Ren L. Yi-Bing. A mobility management strategy for gprs. IEEE Transac-
tions on Wireless Communications, 2:1178{1188, November 2003.
[17] M. Andrews, K. Kumaran, K. Ramanan, A. Stolyar. Providing Quality of Service
over a Shared Wireless Link. IEEE Communications Magazine, 39:150{154, February
2001.
[18] M. Kaneko, P. Popovski. Adaptive Resource Allocation in Cellular OFDMA System
with Multiple Relay Stations. IEEE International Conference on Communications
(ICC), pages 4831{4836, June 2007.
[19] O. Oyman. Opportunistic Scheduling and Spectrum Reuse in Relay-based Cellular
OFDMA Networks. IEEE Global Telecommunications Conference, pages 3699{3703,
November 2007.
[20] Okasaka, S. and Onoe, S. A new location updating method for digital cellular sys-
tems. Proc. IEEE Vechicular Technology Conf., St. Louis, MO, pages 345{350, May
1991.
[21] P. Taewon, S. Oh-Soon, L. Kwang Bok. Proportional fair scheduling for wireless com-
munication with multiple transmit and receive antennas. IEEE Vehicular Technology
Conference, 3:1573{1577, October 2003.
[22] R. Berry, E. Yeh. Throughput and delay optimal resource allocation in multi-access
fading channels. Proceedings of the International Symposium on Information Theory,
page 254, 2003.
[23] R. Berry, E. Yeh. Queue Proportional Scheduling via Geometric Programming in
Fading Broadcast Channels. IEEE Journal On Selected Areas In Communications,
24(8):1593{1602, AUGUST 2006.
[24] R. Pabst, B.H. Walke, D.C. Schultz. Relay-based deployment concepts for wire-
less and mobile broadband radio. IEEE Communications Magazine, pages 80{89,
September 2004.
[25] S. Kibeom, R. Narasimhan, J.M. Cio±. Queue Proportional Scheduling in Gaussian
Broadcast Channels. IEEE International Conference on Communications, 4:1647{
1652, JUNE 2006.
[26] T. Cover, J. Thomas. Elements of Information Theory. John Wiley and Sons, Inc.,
1991.
[27] Z. Chan, G.Wunder. A Novel Low Delay Scheduling Algorithm for OFDM Broadcast
Channel. IEEE Global Telecommunications Conference, pages 3709{3713, November
2007.