簡易檢索 / 詳目顯示

研究生: 謝誌忠
Chih-Chung,Hsieh
論文名稱: 共光程外差干涉術應用於高解析度表面電漿共振生物感測器之研究
High resolution surface plasmon resonance biosensor based on common-path heterodyne interferometry
指導教授: 吳見明
Chien-Ming Wu
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 80
中文關鍵詞: 四分之一波片羊的免疫球蛋白生物感測器外差干涉儀
外文關鍵詞: quarter waveplate, sheep IgG, biosensor, heterodyne interferometry
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們利用共光程外差干涉的方式建構一個高靈敏度表面電漿共振生物感測器。透過調整四分之一相位延遲片的快軸方向來改變偏振態以得到較好的干涉品質,因此得到非常高的靈敏度,並利用鎖相放大器來提高我們的訊雜比。而加入四分之一相位延遲片之後可量測到約降低1000倍的量測濃度。我們利用羊的專一性抗原抗體來作為生物感測器研究。經由我們的實驗比較,我們的實驗架構在未調整靈敏度的情況下已經可以量測到55ng/ml的濃度訊號,比商用儀器Biacore X量到更低的濃度訊號。而調整四分之一相位延遲片的快軸之後,我們更可以清楚量測到11ng/ml的專一性蛋白質濃度。而我們利用已知折射率的蔗糖水溶液估計得到本系統的解析度約為 ,也比商用儀器來的高。


    We have established a high resolution and real-time detection surface plasmon resonance biosensor based on common-path heterodyne interferometry. It could achieve very high sensitivity by adjusting the fast axis of a quarter waveplate (QWP), and have better signal-to-noise ratio by using a lock-in amplifier. The system with QWP can measure the concentration down to three orders than that without quarter waveplates. The measurenent targets are biospecific antibody and antigen of sheep. Our setup could measure low concntration as low as 55ng/ml of anti-sheep IgG without QWP, which is better than that of Biacore X system by Biacore Inc.. We could measure concentration as low as 11ng/ml after added two QWPs in our setup. The system is estimated to have the resolution as low as .

    中文摘要 I 英文摘要 II 致謝 III 目錄 IV 圖目錄 VII 表目錄 IX 第一章 序論 1 1.1 前言 1 1.2 文獻回顧 2 1.3 研究動機 8 1.4 論文大綱 9 第二章 原理 10 2.1 表面電漿共振基本原理 10 2.1.1全反射與衰逝波 10 2.1.2多重介面反射 12 2.1.3表面電漿共振 14 2.2 量測方法與量測架構 19 2.2.1 調變方式 19 2.2.2 SPR組態 21 2.3 外差干涉術 23 2.3.1 前言 23 2.3.2 共光程外差干涉原理 24 2.3.3 共光程外差干涉儀基本架構 25 2.4 實驗架構 27 2.4.1 共光程外差干涉表面電漿共振感測器 27 2.4.2 液體傳輸系統 29 第三章 表面電漿共振生物感測器 31 3.0 前言 31 3.1 生物感測器 31 3.1.1 生物感測器簡介 31 3.1.2 免疫學簡介 34 (A) 免疫球蛋白 34 (B) 抗原抗體專一性結合 36 3.2 實驗材料與方法 37 3.2.1 實驗材料 37 3.2.2 實驗方法 38 3.2.3 實驗範圍 39 第四章 實驗結果與討論 40 4.0 前言 40 4.1 實驗結果 40 4.2 實驗討論 59 4.2.1 靈敏度討論 59 4.2.2 流速討論 61 第五章 結論 64 參考文獻 66

    參考文獻

    1.R. W. Wood, "On a remarkable case of uneven distribution of light in a diffraction grating spectrum," Philosophical Magazine : Sturcture and Properties of Condensed Matter 4, 396-408 (1902).
    2.U. Fano, "The theory of anomalous diffraction grating and quasi-stationary waves on metallic surface(Sommerfeld`s waves)," Journal of the optical society of America 31, 213-222 (1941).
    3.A. Otto, "Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection," Zeitschrift fur physik 216, 398-410 (1968).
    4.E. Kretschmann and H. Raether, "Radiative decay of non-radiative surface plasmon excited by light," Zeitschrift fur physik 216, 2135-2136 (1968).
    5.R. Bruns and H. Raether, "Plasma resonance radiation from non radiative plasmons," Zeitschrift fur physik 237, 98-106 (1970).
    6.C. Nylander, B. Liedberg, and T. Lind, "Gas-Detection by Means of Surface-Plasmon Resonance," Sensors and Actuators 3(1), 79-88 (1982).
    7.B. Liedberg, C. Nylander, and I. Lundstrom, "Surface-Plasmon Resonance for Gas-Detection and Biosensing," Sensors and Actuators 4(2), 299-304 (1983).
    8.http://www.biacore.com.
    9.S. G. Nelson, K. S. Johnston, and S. S. Yee, "High sensitivity surface plasmon resonance sensor based on phase detection," Sensors and Actuators B-Chemical 35(1-3), 187-191 (1996).
    10.A. V. Kabashin and P. I. Nikitin, "Interferometer based on a surface-plasmon resonance for sensor applications," Quantum Electronics 27(7), 653-654 (1997).
    11.P. I. Nikitin, A. A. Beloglazov, V. E. Kochergin, M. V. Valeiko, and T. I. Ksenevich, "Surface plasmon resonance interferometry for biological and chemical sensing," Sensors and Actuators B-Chemical 54(1-2), 43-50 (1999).
    12.J. Homola, I. Koudela, and S. S. Yee, "Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison," Sensors and Actuators B-Chemical 54(1-2), 16-24 (1999).
    13.H. P. Chiang, Y. C. Wang, P. T. Leung, and W. S. Tse, "A theoretical model for the temperature-dependent sensitivity of the optical sensor based on surface plasmon resonance," Optics Communications 188(5-6), 283-289 (2001).
    14.A. N. Naimushin, S. D. Soelberg, D. U. Bartholomew, J. L. Elkind, and C. E. Furlong, "A portable surface plasmon resonance (SPR) sensor system with temperature regulation," Sensors and Actuators B-Chemical 96(1-2), 253-260 (2003).
    15.C. D. Hodgman, Handbook of chemistry and physics, 41 ed. (Cleveland, Ohio :Chemical Rubber, 1960-61).
    16.X. L. Yu, D. X. Wang, and Z. B. Yan, "Simulation and analysis of surface plasmon resonance biosensor based on phase detection," Sensors and Actuators B-Chemical 91(1-3), 285-290 (2003).
    17.R. P. H. Kooyman, H. Kolkman, J. Vangent, and J. Greve, "Surface-Plasmon Resonance Immunosensors - Sensitivity Considerations," Analytica Chimica Acta 213(1-2), 35-45 (1988).
    18.J. S. Yuk, S. J. Yi, H. G. Lee, H. J. Lee, Y. M. Kim, and K. S. Ha, "Characterization of surface plasmon resonance wavelength by changes of protein concentration on protein chips," Sensors and Actuators B-Chemical 94(2), 161-164 (2003).
    19.C. M. Wu, Z. C. Jian, S. F. Joe, and L. B. Chang, "High-sensitivity sensor based on surface plasmon resonance and heterodyne interferometry," Sensors and Actuators B-Chemical 92(1-2), 133-136 (2003).
    20.S. A. Shen, T. Liu, and J. H. Guo, "Optical phase-shift detection of surface plasmon resonance," Applied Optics 37(10), 1747-1751 (1998).
    21.M. C. Pao, "Surface plasmon resonance sensors based on a new heterodyne interferometry," Master thesis (2002).
    22.E. Collett, Polarized light-fundamentals and applications (Measurement Concepts,INC, New Jersey, 1992), pp. 534-538.
    23.C. D. Xiao and S. F. Sui, "Characterization of surface plasmon resonance biosensor," Sensors and Actuators B-Chemical 66(1-3), 174-177 (2000).
    24.D. Roy, "Optical characterization of multi-layer thin films using the surface plasmon resonance method: A six-phase model based on the Kretschmann formalism," Optics Communications 200(1-6), 119-130 (2001).
    25.http://www.ti.com/spr.
    26.J. S. Yuk, S. J. Yi, S. W. Park, J. A. Han, Y. M. Kim, and K. S. Ha, "Characterization of Ti/Au metal spot arrays by a wavelength interrogation-based surface plasmon resonance biosensor," Sensors and Materials 16(1), 43-51 (2004).
    27.B. Chadwick and M. Gal, "An Optical-Temperature Sensor Using Surface-Plasmons," Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers 32(6A), 2716-2717 (1993).
    28.V. E. Kochergin, A. A. Beloglazov, M. V. Valeiko, and P. I. Nikitin, "Phase properties of a surface-plasmon resonance from the viewpoint of sensor applications," Quantum Electronics 28(5), 444-448 (1998).
    29.A. A. Kruchinin and Y. G. Vlasov, "Surface plasmon resonance monitoring by means of polarization state measurement in reflected light as the basis of a DNA-probe biosensor," Sensors and Actuators B-Chemical 30(1), 77-80 (1996).
    30.J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sensors and Actuators B-Chemical 54(1-2), 3-15 (1999).
    31.P. Hariharan, Basics of interferometry (Academic Press, INC,Harcourt Brace Jovanovich, 1991), pp. 67-77,189.
    32.F. G. Smith and T. A. King, Optics and photonics:An introduction (John wiley &Sons,Ltd., 2000), pp. 209-211.
    33.J. Y. Lee and D. C. Su, "Common-path heterodyne interferometric detection scheme for measuring wavelength shift," Optics Communications 162(1-3), 7-10 (1999).
    34.K. H. Chen, C. C. Hsu, and D. C. Su, "Measurement of wavelength shift by using surface plasmon resonance heterodyne interferometry," Optics Communications 209(1-3), 167-172 (2002).
    35.J. Y. Lin and D. C. Su, "A new type of optical heterodyne polarimeter," Measurement Science & Technology 14(1), 55-58 (2003).
    36.M. H. Chiu and D. C. Su, "Angle measurement using total-internal-reflection heterodyne interferometry," Optical Engineering 36(6), 1750-1753 (1997).
    37.W. Gopel and P. Heiduschka, "Interface Analysis in Biosensor Design," Biosensors & Bioelectronics 10(9-10), 853-883 (1995).
    38.S. Lofas and B. Johnsson, "A Novel Hydrogel Matrix on Gold Surfaces in Surface-Plasmon Resonance Sensors for Fast and Efficient Covalent Immobilization of Ligands," Journal of the Chemical Society-Chemical Communications (21), 1526-1528 (1990).
    39.R. J. Pei, X. Q. Cui, X. R. Yang, and E. K. Wang, "Real-time immunoassay of antibody activity in serum by surface plasmon resonance biosensor," Talanta 53(3), 481-488 (2000).
    40.Janeway, A. Charles, and P. Travers, Immunobiology, 5 ed. (New York and London, 2001), pp. 93-105.
    41.E. W. Silverton, M. A. Navia, and D. R. Davies, "Three dimensional structure of an intact human immunoglobulin," Proceedings of the National Academy of Sciences of the United States of America 74, 5140 (1977).
    42.D. C. Cullen, R. G. W. Brown, and C. R. Lowe, "Detection of Immuno-Complex Formation Via Surface-Plasmon Resonance on Gold-Coated Diffraction Gratings," Biosensors 3(4), 211-225 (1987).
    43.R. L. David, CRC handbook of chemistry and physics, 83rd ed. (2002-2003), pp. 8-69.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE