簡易檢索 / 詳目顯示

研究生: 郭瓊蓮
Cyong-Lian Guo
論文名稱: 利用射束阻擋法修正三維正子造影之非真實事件貢獻
Correction of Non-True Coincidence in 3D PET using Beam Stopper Device
指導教授: 莊克士
Keh-Shih Chuang
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 65
中文關鍵詞: 旋繞式射束阻擋修正法散射事件隨機事件
外文關鍵詞: beam stopper, scatter event, random event
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 正子斷層造影掃描是在核子醫學上一項非侵襲性的檢查技術,提供臨床上功能性生理資訊。目前常用三維擷取模式來提高造影的靈敏度,但隨機與散射同符事件因此提高。一般隨機事件修正是利用即時的延遲時間窗修正法;散射事件修正是利用單次散射光子模擬法,然而以上修正法皆有缺失影響修正後的準確性。為有效矯正正子造影非真實事件,在此提出利用蒙地卡羅模擬旋繞式射束阻擋裝置修正法。
    本研究使用GATE蒙地卡羅軟體模擬microPET R4系統以及射束阻擋修正法。利用射束阻擋裝置在不同角度下兩組正旋圖受檔塊遮蔽下的資訊,交叉計算出其非真實事件的貢獻量,因非真實事件分布是緩慢變化函數,所以可根據擋塊遮蔽部份的取樣點利用cubic-spline內插法得到整張正弦圖中非真實事件分布情形,再進行矯正。
    本實驗研究優點在提出能窗範圍較大靈敏度提升的同時,掃描時間保持固定,射束修正法矯正的非真實事件分率31.55%與蒙地卡羅非真實事件分率29.62%的結果相近。旋繞式射束阻擋法是個方便、有效的修正方式,相信本研究所提出的矯正法是更適合於正子斷層造影臨床上應用。


    Position Emission Tomography (PET) is a non-invasive technique in nuclear medicine, which can provide physiological information using molecular tracers. As the 3D acquisition of PET data increases, random and scatter coincidence events are increasingly relevant issue. They cause a uniform distribution of background on the image and degrade the accuracy of quantitative analysis. The conventional correction method for random and scatter events are achieved by the delayed time window method and Single Scatter Simulation(SSS) method. However, they increase noise and decrease image accuracy.
    Beam stopper rotation method examines the feasibility of using beam stoppers (BS) for correcting non-true coincidence. The BS placed on the line of response (LOR) at two different locations rotated constant degrees, which absorbs a particular fraction of the true events. The non-true component, which can’t be stop at the LOR blocked by each stopper can be estimated. Assuming that the non-true radiation has a spatially slow-varying distribution, the whole non-true sinogram can be recovered using cublic-spline interpolation from these local measurements. BSR method reduces the effective sampling distance without increasing the stopper’s number. The study uses Monte Carlo (MC) simulation tools of 3-D PET, ”GATE” on a cold phantom to conduct the BSR method.
    The main advantage of this study is achieved well corrected effect at larger energy window. The non-true fraction of BSR method is 31.55% and is close to the result of Monte-Carlo simulation. In sum, BSR method is a convenience and effective non-true correction method for 3D PET.

    目錄 標 題………………………………………………………………………………………I 中文摘要…………………………………………………………………………….........II 英文摘要............................................................................................................................III 誌謝………………………………………………………………………………….......IV 目錄………………………………………………………………………………….........V 圖目錄……………………………………………………………………………….....VIII 表目錄………………………………………………………………………………...…X 第一章 緒論......................................................................................................................1 1.1 前言……………...………………………………………………………………..1 1.1.1 放射性同位素…………………………………………………………..…….2 1.1.2 放射性標誌藥物核種………………………………………………………...5 1.1.3 正子造影偵檢器……………………………………………………………...7 1.1.4 PET成像原理…….……………………...………………………………….11 1.1.5 同符事件………………………………………………………………….…13 1.1.5.1 真實事件……………………………………………………………...13 1.1.5.2 散射事件……………………………………………………………...13 1.1.5.3 隨機事件……………………………………………………………...14 1.1.5.4 單一事件……………………….………………………………...……15 1.1.5.5 多重事件……………………….…………………………………...…15 1.1.6 二維造影和三維造影……………………………………………………….16 1.2 研究動機與目的………………………………………………………………18 1.2.1 研究動機………...……………………………………………………….....18 1.2.2 研究目的..........................................................................................................18 1.3 論文架構…….…………………………………………………………………....18 第二章 文獻回顧………………………………………………………………………19 2.1 非真實事件修正法……………………………..……………………………...…19 2.1.1 隨機事件修正法…….……………………………………………………….19 2.1.2 散射事件修正法…….....…………………………………………………….20 第三章 材料與方法............…………………………………………………………...23 3.1 微型正子斷層掃描儀…………………………………………………………23 3.2 旋繞式射束阻擋修正法………………………………………………………26 3.2.1 物體掃描.…………………………………………………………………….26 3.2.2 空氣掃描…………..…………………………………………………………28 3.2.3 非真實事件的計算…………..………………………………………………30 3.2.4 主要是件的計算.……….……………………………………………………31 3.2.5 演算法流程……………..……………………………………………………31 3.3 實驗設計與設備………………………………………………………………32 3.3.1 系統描述.………………………………….…………………………………33 3.3.2 射束阻擋裝置設置.……………………….………………………………...34 3.3.3 假體設計……...………….……………….…………………………………34 3.4 實驗設計與分析……………...………………………………………………35 3.4.1 資料處理與重建參數設定…...…...…………………………………………35 3.4.2 影像品質評估.……...………………………………………………………..36 3.5 假體實驗……………………………………………………………………..37 3.5.1 實驗裝置………….………………………...………………………………..37 3.5.2 量化分析方法………………………………………………………………..37 第四章 研究結果..........................................................................................................39 4.1 主射束穿透率……………………………………………………………………..39 4.2 影像品質評估……………………………………………………………………..40 4.2.1 正弦圖水平剖面 …………………………………………………………..40 4.2.2 重建影像…… ……………………………….…………………………….42 4.2.3 重建影像剖面圖… ………………………….…………………………….43 4.2.4 量化分析……………… …………………….…………………………….45 4.3 影像品質評估-受照野外之非真實事件影響……………….…………………..47 4.3.1 正弦圖水平剖面……… …………………………………………………..47 4.3.2 重建影像… ………………………………………………………………..48 4.3.3 重建影像剖面圖… ………………………………………………………..49 4.3.4 量化分析… ………………………………………………………………..51 4.4 假體實驗結果………………………………….………………………...……….53 4.4.1 主射束穿透率… …………………………………………………………..53 4.4.2 重建影像… ………………………….…………………………………….54 4.4.3 重建影像剖面圖 ..…………………………………………………………54 4.4.4 量化分析… ………………………………………………………………..55 第五章 討論……..……………………………………………………………………56 5.1 射束檔塊裝置………………………………...…………………………………..56 5.2 旋繞式射束阻擋修正法與傳統修正法…………...…………..…………………57 5.2.1 修正效果……… …………………………………………………………..57 5.2.2 能窗範圍增大探討… ……………………………………………………..57 5.2.3 照野範圍外(OFOV)探討…………………………………………….……58 5.2.4 對比恢復探討… …………………………………………………………..59 5.3 假體實驗探討………...…………………………………………………………..59 第六章 結論……..……………………………………………………………………60 第七章 參考文獻……..………………………………………………………………63 圖目錄 圖1.1 衰變與互毀反應示意圖……………………………………………………….5 圖1.2 葡萄糖與18F-FDG化學結構式…………………………………………………...6 圖1.3 18F-FDG與葡萄糖(Glucose)在體內代謝反應……………………………………7 圖1.4 圖示Block Detector……………………………………………………………...10 圖 1.5 同符線路……………………………………………………………………….…10 圖1.6 正弦圖成像示意圖……………………………………………………………….12 圖1.7 正子造影反應線與中心點最短距離以及偵檢器旋轉角度示意圖…………….12 圖1.8 同符事件種類…………………………………………………………………….16 圖1.9 正子造影二維與三維擷取模式………………………………………………….17 圖2.1 SSS修正法散射計算示意圖…………………………………………………….22 圖 3.1核能研究所microPET R4外觀圖……………………………………………….25 圖3.2節錄自文獻(Kume 1999),金屬通道倍極結構示意圖……………………...…25 圖 3.3節錄自文獻(Kume 1999),交錯式金屬絲陽極及偵測示意圖……...…………26 圖3.4 BSR實驗結構示意圖……………………………………………………………28 圖3.5空氣掃描示意圖………………………………………………………………….29 圖3.6演算法流程圖…………………………………………………………………….32 圖3.7模擬實驗假體示意圖…………………………………………………………….35 圖3.8對比恢復(CS Recovery)示意圖………………………………………………….37 圖3.9假體實驗裝置…………………………………………………………………….38 圖3.10(a)(b)實驗假體之活度比………………………………………...………...38 圖 4.1模擬數據射束擋塊穿透率之T值直方圖……………………………………….40 圖4.2(a)(b) 能窗350-650keV以及能窗300-650keV正弦圖90°位置評估BSR、傳統法(SSS+DLC)以及蒙地卡羅對正子照影上的非真實事件貢獻之剖面圖…………………………………………………………………………………………41 圖4.3(a)(b)(c)(d) 皆為能窗350-650keV之間,利用不同修正法(如(a)(b))以及蒙地卡羅與未修正(如(c)(d))重建影像結果………………………………………………..…..42 圖4.4(a)(b)(c)(d)皆為能窗300-650keV之間,利用不同修正法(如(a)(b))以及蒙地卡 羅與未修正(如(c)(d))重建影像結果…………………………………………………....43 圖4.5(a)(b) 能窗350-650keV以及能窗300-650keV重建影像水平剖面圖……..….44 圖4.6(a)(b) 能窗350-650keV以及能窗300-650keV重建影像垂直剖面圖……..…45 圖4.7能窗350-650keV正弦圖水平剖面圖……………………………..…………….48 圖4.8 OFOV能窗350-650keV重建影像……………………………………………...49 圖4.9 OFOV能窗350-650keV重建影像水平剖面圖…………..…………………….50 圖4.10 OFOV能窗350-650keV重建影像垂直剖面圖…………………………….…51 圖4.11臨床實驗T值直方圖…………………………………………………………...53 圖4.12(a)(b)(c)分別是利用BS修正法、SSS_DLC修正法以及未修正重建的影像..54 圖4.13為假體實驗不同修正法重建影像之水平剖面圖……………………………...54 表目錄 表1.1 衰變核種及物理特性………………………………………………………….4 表 1.2閃爍晶體材料與特性……………………………………………………………...9 表1.3各種閃爍體性質比較……………………………………………………………...9 表4.1正弦圖量化結果………………………………………………………………….46 表4.2是能窗350-650keV影像量化對比的結果……………………………...………46 表4.3是能窗350-650keV影像量化對比的結果………………………...……………47 表4.4 照野外與照野非真實事件分率………………………………………………52 表4.5 18F射源在不同修正法照野外與照野的常態均方誤差………………………52 表4.6 18F射源在不同修正法下對比恢復(CS Recovery)………………….…………..52 表4.7假體實驗影像對比量化分析………………………………………………….…55 表5.1 Hot phantom模擬研究之NMSE結果……………………………………..……58

    第七章 參考文獻
    Badawi R D, Miller M P, Bailey D L and Marsden P K 1999 Randoms
    variance reduction in 3D PET Phys Med Biol 44 941-54
    Barker W C, Szajek L P, Green S L, and Carson R E 2001 Improved
    quantification for Tc-94m PET imaging IEEE Trans. Nucl. Sci. 48 739-
    742
    Brasse D, Kinahan P E, Lartizien C and Comtat C 2005 Correction
    Methods for Random Coincidences in Fully 3D Whole-Body PET:
    Impact on Data and Image Quality J. Nucl. Med.46 859-867
    Charles C M, Brad T C, Martin R S, Lisa D H, Nickerson and Nickles R
    J 1995 Quantitative PET with Positron Emitters that Emit
    Prompt Gamma Rays IEEE Trans. on Med. Imaging 14 681-687
    Chuang K S and Lin Hsin-Hon 2006 Optimisation of scatter
    correction based on the use of partially transparent beam stoppers in PET
    Nucl. Instrum. Met. Phys. Res A 569 175-179
    Dinko E T, Ravindra M and Manjeshwar 2004 Quantitation of Small-
    Animal 124I Activity Distributions Using a Clinical PET/CT Scanner
    Nucl. Med. 45 1237-1244
    Ferreira N C, Trebossen R, Lartizien C, Brulon V, Merceron P and
    Bendriem B 2002 A hybrid scatter correction for 3D PET based on an
    estimation of the distribution of unscattered coincidences:
    implementation on the ECAT EXACT HR+ Phys. Med. Biol. 47 1555-
    1571
    Harrison R L, Haynor D R, Gillispie S B, Vannoy S D, Kaplan M S and
    Lewellen T K 1993 A public-domain simulation system for emission
    tomography: photon tracking through heterogeneous attenuation using
    importance sampling J. Nucl. Med. 34 1154-1158
    Herzog H, Tellmann L, Qaim S M, Spellerberg S and Schmid A 2002
    PET quantitation and imaging of the non-pure positronemitting iodine
    isotope 124I Applied Radiation and Isotopes 56 673-679
    Hudson H M and Larkin R S 1994 Accelerated image reconstruction using
    ordered subsets of projection data IEEE Trans.Med.Imaging 13 601-609
    Humm J L, Rosenfeld A and Del G A 2003 From PET detectors to PET
    scanners Eur. J. Nuc.l Med. Mol. Imaging 30 1574-1597
    Lubberin M, Schneider H and Lundqvistl H 2002 Quantitative imaging
    and correction for cascade gamma radiation of 76Br with 2D and 3D
    PET Phys. Med. Biol. 47 3519-3534
    Melcher C L 2000 Scintillation crystals for PET J. Nucl. Med. 41(6) 1051-5
    Pani R, Pergola A, Pellegrini R, Soluri A, De Vincentis G and Filippi S
    1997 New genetation position-sensitive PMT for nuclear medicine
    imaging Nucl. Instrum. Met. Phys. Res. A 392 319-323
    Pentlow K S, Graham M C and Lambrecht R M 1991 Quantitative
    imaging of 1-124 using positron emission tomography with applications
    to radioimmunodiagnosis and radioimmunotherapy Med. Phys. 18 357-
    366
    Pointon B W and Sossi V 2003 Towards Model-based Randoms
    Correction For 3-D Dual Head Coincidence Imaging IEEE Nuclear
    Science Symposium Conference Record 4 2799-2803
    Sakellios N G, Karali E, Lazaro D, Loudos G K and Nikita K S 2006 Monte-
    Carlo simulation for scatter correction compensation studies in SPECT
    imaging using GATE software package Nucl. Instrum. Met. Phys. Res. A
    569 404-408
    Schueller M J and Mulnix T L 2003 Addressing the Third Gamma
    Problem in PET IEEE Trans. on Nucl. Sci. 50 1286-1289
    Spinksy T J, Miller M P, Bailey D L, Bloomfield P M, Livieratos L and
    Jones T 1998 The effect of activity outside the direct field of view in a
    3D-only whole-body positron tomography Phys. Med. Biol. 43 895-904
    Vandenberghe S 2006 Three-dimensional positron emission tomography
    imaging with 124I and 86Y Nucl. Med. Commu. 27 237-245
    Watson C C, Newport D, Casey M E, DeKemp R A, Beanlands R S and
    Schmand M 1997 Evaluation of simulationbased scatter correction for 3D
    PET cardiac imaging IEEE Trans. Nucl. Sci. 44 90-97
    Werling A, Bublitz O, Doll J, Adam L E and Brix G Fast implementation of
    the single scatter simulation algorithm and its use in iterative
    reconstruction of 3D PET data Phys. Med. Biol. 47 2947-2960
    Wu J, Chuang K S, Hsu C H, Jan M L, Hwang I M and Chen T J 2005
    Scatter correction for 3D PET using beam stoppers combined with dual
    energy window acquisition: a feasibility study Phys. Med. Biol. 27 1813-
    1826
    Zanzonico P 2004 Positron Emission Tomography: A review of basic
    principles, scanner design and performance, and current systems
    Seminars in Nuclear Medicine 34 87-111

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE