研究生: |
郭瓊蓮 Cyong-Lian Guo |
---|---|
論文名稱: |
利用射束阻擋法修正三維正子造影之非真實事件貢獻 Correction of Non-True Coincidence in 3D PET using Beam Stopper Device |
指導教授: |
莊克士
Keh-Shih Chuang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 中文 |
論文頁數: | 65 |
中文關鍵詞: | 旋繞式射束阻擋修正法 、散射事件 、隨機事件 |
外文關鍵詞: | beam stopper, scatter event, random event |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
正子斷層造影掃描是在核子醫學上一項非侵襲性的檢查技術,提供臨床上功能性生理資訊。目前常用三維擷取模式來提高造影的靈敏度,但隨機與散射同符事件因此提高。一般隨機事件修正是利用即時的延遲時間窗修正法;散射事件修正是利用單次散射光子模擬法,然而以上修正法皆有缺失影響修正後的準確性。為有效矯正正子造影非真實事件,在此提出利用蒙地卡羅模擬旋繞式射束阻擋裝置修正法。
本研究使用GATE蒙地卡羅軟體模擬microPET R4系統以及射束阻擋修正法。利用射束阻擋裝置在不同角度下兩組正旋圖受檔塊遮蔽下的資訊,交叉計算出其非真實事件的貢獻量,因非真實事件分布是緩慢變化函數,所以可根據擋塊遮蔽部份的取樣點利用cubic-spline內插法得到整張正弦圖中非真實事件分布情形,再進行矯正。
本實驗研究優點在提出能窗範圍較大靈敏度提升的同時,掃描時間保持固定,射束修正法矯正的非真實事件分率31.55%與蒙地卡羅非真實事件分率29.62%的結果相近。旋繞式射束阻擋法是個方便、有效的修正方式,相信本研究所提出的矯正法是更適合於正子斷層造影臨床上應用。
Position Emission Tomography (PET) is a non-invasive technique in nuclear medicine, which can provide physiological information using molecular tracers. As the 3D acquisition of PET data increases, random and scatter coincidence events are increasingly relevant issue. They cause a uniform distribution of background on the image and degrade the accuracy of quantitative analysis. The conventional correction method for random and scatter events are achieved by the delayed time window method and Single Scatter Simulation(SSS) method. However, they increase noise and decrease image accuracy.
Beam stopper rotation method examines the feasibility of using beam stoppers (BS) for correcting non-true coincidence. The BS placed on the line of response (LOR) at two different locations rotated constant degrees, which absorbs a particular fraction of the true events. The non-true component, which can’t be stop at the LOR blocked by each stopper can be estimated. Assuming that the non-true radiation has a spatially slow-varying distribution, the whole non-true sinogram can be recovered using cublic-spline interpolation from these local measurements. BSR method reduces the effective sampling distance without increasing the stopper’s number. The study uses Monte Carlo (MC) simulation tools of 3-D PET, ”GATE” on a cold phantom to conduct the BSR method.
The main advantage of this study is achieved well corrected effect at larger energy window. The non-true fraction of BSR method is 31.55% and is close to the result of Monte-Carlo simulation. In sum, BSR method is a convenience and effective non-true correction method for 3D PET.
第七章 參考文獻
Badawi R D, Miller M P, Bailey D L and Marsden P K 1999 Randoms
variance reduction in 3D PET Phys Med Biol 44 941-54
Barker W C, Szajek L P, Green S L, and Carson R E 2001 Improved
quantification for Tc-94m PET imaging IEEE Trans. Nucl. Sci. 48 739-
742
Brasse D, Kinahan P E, Lartizien C and Comtat C 2005 Correction
Methods for Random Coincidences in Fully 3D Whole-Body PET:
Impact on Data and Image Quality J. Nucl. Med.46 859-867
Charles C M, Brad T C, Martin R S, Lisa D H, Nickerson and Nickles R
J 1995 Quantitative PET with Positron Emitters that Emit
Prompt Gamma Rays IEEE Trans. on Med. Imaging 14 681-687
Chuang K S and Lin Hsin-Hon 2006 Optimisation of scatter
correction based on the use of partially transparent beam stoppers in PET
Nucl. Instrum. Met. Phys. Res A 569 175-179
Dinko E T, Ravindra M and Manjeshwar 2004 Quantitation of Small-
Animal 124I Activity Distributions Using a Clinical PET/CT Scanner
Nucl. Med. 45 1237-1244
Ferreira N C, Trebossen R, Lartizien C, Brulon V, Merceron P and
Bendriem B 2002 A hybrid scatter correction for 3D PET based on an
estimation of the distribution of unscattered coincidences:
implementation on the ECAT EXACT HR+ Phys. Med. Biol. 47 1555-
1571
Harrison R L, Haynor D R, Gillispie S B, Vannoy S D, Kaplan M S and
Lewellen T K 1993 A public-domain simulation system for emission
tomography: photon tracking through heterogeneous attenuation using
importance sampling J. Nucl. Med. 34 1154-1158
Herzog H, Tellmann L, Qaim S M, Spellerberg S and Schmid A 2002
PET quantitation and imaging of the non-pure positronemitting iodine
isotope 124I Applied Radiation and Isotopes 56 673-679
Hudson H M and Larkin R S 1994 Accelerated image reconstruction using
ordered subsets of projection data IEEE Trans.Med.Imaging 13 601-609
Humm J L, Rosenfeld A and Del G A 2003 From PET detectors to PET
scanners Eur. J. Nuc.l Med. Mol. Imaging 30 1574-1597
Lubberin M, Schneider H and Lundqvistl H 2002 Quantitative imaging
and correction for cascade gamma radiation of 76Br with 2D and 3D
PET Phys. Med. Biol. 47 3519-3534
Melcher C L 2000 Scintillation crystals for PET J. Nucl. Med. 41(6) 1051-5
Pani R, Pergola A, Pellegrini R, Soluri A, De Vincentis G and Filippi S
1997 New genetation position-sensitive PMT for nuclear medicine
imaging Nucl. Instrum. Met. Phys. Res. A 392 319-323
Pentlow K S, Graham M C and Lambrecht R M 1991 Quantitative
imaging of 1-124 using positron emission tomography with applications
to radioimmunodiagnosis and radioimmunotherapy Med. Phys. 18 357-
366
Pointon B W and Sossi V 2003 Towards Model-based Randoms
Correction For 3-D Dual Head Coincidence Imaging IEEE Nuclear
Science Symposium Conference Record 4 2799-2803
Sakellios N G, Karali E, Lazaro D, Loudos G K and Nikita K S 2006 Monte-
Carlo simulation for scatter correction compensation studies in SPECT
imaging using GATE software package Nucl. Instrum. Met. Phys. Res. A
569 404-408
Schueller M J and Mulnix T L 2003 Addressing the Third Gamma
Problem in PET IEEE Trans. on Nucl. Sci. 50 1286-1289
Spinksy T J, Miller M P, Bailey D L, Bloomfield P M, Livieratos L and
Jones T 1998 The effect of activity outside the direct field of view in a
3D-only whole-body positron tomography Phys. Med. Biol. 43 895-904
Vandenberghe S 2006 Three-dimensional positron emission tomography
imaging with 124I and 86Y Nucl. Med. Commu. 27 237-245
Watson C C, Newport D, Casey M E, DeKemp R A, Beanlands R S and
Schmand M 1997 Evaluation of simulationbased scatter correction for 3D
PET cardiac imaging IEEE Trans. Nucl. Sci. 44 90-97
Werling A, Bublitz O, Doll J, Adam L E and Brix G Fast implementation of
the single scatter simulation algorithm and its use in iterative
reconstruction of 3D PET data Phys. Med. Biol. 47 2947-2960
Wu J, Chuang K S, Hsu C H, Jan M L, Hwang I M and Chen T J 2005
Scatter correction for 3D PET using beam stoppers combined with dual
energy window acquisition: a feasibility study Phys. Med. Biol. 27 1813-
1826
Zanzonico P 2004 Positron Emission Tomography: A review of basic
principles, scanner design and performance, and current systems
Seminars in Nuclear Medicine 34 87-111