簡易檢索 / 詳目顯示

研究生: 蕭進松
chin-sung Hsiao
論文名稱: 光波導問題之研究:發展新穎數值方法及設計高效率脊形波導結構
Study of Optical Waveguide Problems: Developing New Numerical Methods and Designing Efficient
指導教授: 王立康
likarn Wang
口試委員:
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 130
中文關鍵詞: 傅立葉餘弦級數等效折射率
外文關鍵詞: Fourier cosine series, effective index
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 自1970年雷射被發明以來,被用在資料傳輸於光纖通訊系統的載波頻率,已從毫米增至微米等級,千倍乃至於萬倍的增加。
    光纖通訊系統以雷射為光源,並以分波多工技術為基礎的單模光纖為傳輸媒介,其傳輸容量達到3.2Tb/s或更多在今日已被實現。 過去十年來積體電路的快速重成長,很多心力已經投入在光積體電路核心參數:光波導模態的計算。在本論文裡,我們以新穎數值方法來研究波導問題,並以兩種不同結構說明。首先是縱向結構不變之光波導多模干涉耦合器,在這主題中,我們提出不同於一般的數值方法來探討光波在一任意折射率分佈之縱向結構不變之光波導裡傳播情形。於我們方法中,將電場及折射率以有限項傅立葉級數展開,將這些被展開的級數代入波動方程式,可導出二階矩陣微分方程式,我們已証明這矩陣方程式可被解出且在波導任意縱向位置的波場亦可得到。以本數值方法解此波導結構,可免除使用商業軟體光束傳播法。本研究主題証明了所提方法和商業軟體 近似法有相同結果。本論文另外主題是以新穎數值方法求脊形波導模態折射率,在本方法裡,將脊形波導之截面積分成很多區域,在每一區域將電場及折射率以有限項傅立葉級數展開,將這些展開級數代入波動方程式,而導出了可解得二階矩陣微分方程式。符合邊界條件下,脊形波導每一區域之特徵模態方程式能被導出,進而數值解得模態折射率。本新穎數值方法在本論文裡以三種不同幾何大小脊形波導來驗證,數值結果証明了本數值方法非常高效率及高精確度,其誤差達到10-5 ~10-6 左右。另外我們對以矽長在絕緣材料(SOI)之脊形波導提出新設計方法,本方法中以較高折射率薄膜長在波導脊形區域來降低波場在平面區域之散射場,進而使其形成圓形模場分佈,如此改善了傳統波導元件的分光效能。例如在y形分光器及多模干涉耦合器,它價降低了分光損失,光纖之耦合損失,和元件尺寸大小。


    The invention of laser in 1970 has steadily increased the carrier frequency from the millimeter wavelength to micrometer range. Optical fiber communication systems using laser diode as the a light source and single-mode fiber as transmission media based on wavelength-division multiplexed (WDM) technology with the transmission capacity of 3.2 Tb/s or more are available now. With the rapid growth of semiconductor manufacturing technology, considerable efforts have been directed to computing the modes of optical rib waveguides, which form the important parts of photonic integrated circuits.
    In this dissertation, we study the solutions of waveguide problems by novel numerical methods on two waveguide structures. The first one is a multimode interference coupler with longitudinally invariant structure. In this structure, we propose a method to study wave propagation in longitudinally invariant waveguides with arbitrary index profile. According to our method, both the electric field and the refractive index profile are expanded into two Fourier cosine series. With these series substituted into the wave equation, a differential matrix equation can then be obtained. We show that such a matrix equation can be explicitly solved and an expression for the wave field at any longitudinal position along an optical waveguide can be obtained. The solution proposed in this method indicates that our approach yields the same results as those obtained by using the beam propagation method with approximation. The second novel numerical method is on solving rib-type waveguide problems. A new semi-analytic method for solving the modal indices of the optical rib-type waveguide problems is presented. In this method, the cross-section of a rib-type waveguide is divided into several regions. In each region, the refractive index profile and field distribution are expanded into Fourier cosine series, and then are substituted in the wave equation. A second-order differential matrix equation is then derived for each region, and a closed-form solution can be obtained. Given the boundary conditions, an eigenmode equation for the rib waveguide can be derived and solved numerically to give the modal indices. The method proposed here is used to deal with three rib waveguides in three different geometric dimensions and/or compositions, respectively. Computational results indicate that our method is quite efficient, in terms of CPU time and its accuracy. The relative error in computing the modal index with the method is about 10-5 ~10-6. In addition, a new design for beam splitting components employing silicon-on-insulator rib waveguide structures is presented. In this design, a high index thin film layer is deposited in the rib section to reduce the wave field dispersive tails in the slab section. Accordingly, it renders the mode field a confined spot. In terms of the excess loss, fiber coupling loss and compactness of these components, this structure improves the beam splitting performance as compared with some conventional waveguide components such as branches and multimode interference couplers (MMICs).

    LIST OF FIGURES………………………………………………………VII LIST OF TABLES………………………………………………………..X Chapter1. INTRODUCTION…………………………………………………………..1 1.1. Review of Numerical methods ……..…………………………………………1 1.2. Description of Rib Waveguide….………………………………………..........1 1.3. Motivation of the Research………...………………………………………….2 1.4. Problem Description…………………………………………………………..3 1.5. Structure of the Dissertation…………………………………………………..4 Chapter2. OUTLINE OF SOME CURRENT NUMERICAL TECHNIQUES………..5 2.1. Introduction………...………………………………………………………….5 2.2. Beam Propagation Method (BPM)...…………………………………….........5 2.2.1 Finite Difference Beam Propagation Method (FD-BPM).…………………..7 2.2.2. Finite-Difference Time-Domain Method (FDTD)………….........................14 2.3. Marcatili Approximation………………..……………………………………17 2.4. Effective Index Method (EIM)……...…………………………......................20 2.5. Pade’ Approximant...........................................................................................24 Chapter3. INVESTIGATION OF MULTIMODE INTERFERENCE COUPLER WITH PROPOSED NUMERICAL METHODS…………………..26 3.1. Introduction……………………………………………………......................26 3.2. Theory………………………………………………………………………..28 3.3. Numerical Results and Discussion……………..…………………………….31 3.4. Conclusion……………………………………………………………………36 Chapter4. STUDY ON RIB-TYPE WAVEGUIDE PROBLEMS WITH PROPOSED NUMERICAL METHODS…………………………52 4.1. Introduction………………………………………………………...................52 4.2. Theory…………………………………………………………………...........54 4.3. Numerical Results…………………………………………………………….67 4.4. Conclusion……………...……………………………………………………..69 Chapter5. A NEW DESIGN OF BEAM SPLITTING COMPONENTS EMPLOYING SOI RIB WAVEGUIDE STRUCTURES….……………………100 5.1. Introduction……………………………………………………………..........100 5.2. Mode Field Modification…………………………………………………….101 5.3. Beam Splitting Performance……………………………………....................102 5.4. Conclusion……………………………………………………………...........104 Chapter6. CONCLUSION.................................………………….………..................111 REFERENCE….……………………………………………………………...............113 Appendix A. DERIVATION OF EQUATION 3.8…………………………………....119 Appendix B DERIVATION OF SCALAR MODE……………………………….......121 Appendix C DERIVATION OF QUASI-TE MODE………………………………....124 Appendix D DERIVATION OF QUASI-TM MODE………………………………...126

    REFERENCE:
    [1] J. A. Fleck, Jr., J. R. Morris, and M. D. Feit, “Time-dependent propagation of high energy laser beams through the atmosphere,” Appl. Phys., vol. 10, pp. 129-160, 1976.
    [2] M. D. Feit and J. A. Fleck, Jr., “Light propagation in graded-index optical fibers,” Appl. Opt., vol. 17, pp. 3990-3998, 1978.
    [3] P. Danielsen and D. Yevick, “Propagation beam analysis of bent optical waveguides,” J. Opt. Commun., vol.4, pp. 94-98, 1983.
    [4] L. Thylen, “Theory and applications of the beam propagation method,” Tech. Dig., OSA,vol.3,Numerical Simulation and Analysis in Guided-Wave Optics and Optoelectrics, pp. 20-23,1989.
    [5] D.Yevick and B. Hermansson, "New formulations of the matrix beam propagation method: application to rib waveguides," IEEE J. Quantum Electron., vol. 25, no. 2. pp. 221-229, Feb. 1989.
    [6] Weiping Huang, Chenglin Xu, Sai-Tak Chu, and Sujeet K. Chaudhuri, "The finite-difference vector beam propagation method: analysis and assessment," IEEE J. Lightwave Technol.vol. 10, pp. 295-305, 1992.
    [7] J. C. Chen and S. Jungling “Computation of high-order waveguide modes by imaginary-distance beam propagation method,” Optical and Quantum Electronics, vol 26, pp 199-205, 1994.
    [8] M. S. Stern, "Semivectorial polarized finite difference method for optical waveguides with arbitrary index profiles," IEE J. Proc. J, vol. 135, pp. 56-63,1998.
    [9] P. Lusse, P. Stuwe, J. Schule, and H. G. Unger "Analysis of vectorial mode fields in optical waveguides by a new finite difference method," IEEE J. Lightwave Technol. vol. 12, no. 3, pp. 487-493, 1994.
    [10] F. Schmit “An adaptive approach to the numerical solution of Fresnel’s wave equation” IEEE J. Lightwave Technol. vol. 11, pp. 1425-1434, 1993.
    [11] J. E. Goell “A circular-harmonic computer analysis of rectangular dielectric waveguides” The Bell System Technol Journal. vol. 48, pp. 2133-2160, 1969.
    [12]. J. B. Davies and C. A. Muilwyk, “Numerical solution of uniform hollow waveguides of arbitrary shape,” in Proc. Inst.Elec.Eng., vol. 113, pp. 277-284, 1966.
    [13] A.Wexler,”Computation of electromagnetic fields,” IEEE Transaction on Microwave Theory and Techniques, vol. 17, pp. 416-439, 1969.
    [14] E. Schweig and W.B. Bridges, "Computer analysis of dielectric waveguides: a finite difference method," IEEE Transaction on Microwave Theory and Techniques, vol. 32, pp. 531-541, 1984.
    [15] K. Bierwirth, N. Schulz, and F. Arndt "Finite difference analysis of rectangular dielectric waveguide structure," IEEE Transaction on Microwave Theory and Techniques, vol. 34, pp. 1104-1114, 1986
    [16] N. Schulz, K. Bierwirth, F. Arndt, and U. Koster "Finite difference method without spurious solutions for the hybrid-mode analysis of diffused channel waveguide," IEEE Transaction on Microwave Theory and Techniques, vol. 38, pp. 722-729, 1990.
    [17]. P. Lusse, P. Stuwe, J. Schule, and H. G. Unger "Vectorial finite difference approach for optical waveguides," in Proc. ECIO’93, 1993
    [18] P. Lusse, P. Stuwe, J. Schule, and H. G. Unger "Analysis of vectorial mode fields in optical waveguides by a new finite difference method," IEEE J. Lightwave Technol. vol. 12, no. 3, pp. 487-493, 1994.
    [19] G. Ronald Hadley, and R. E. Smith "Full-vector waveguide modeling using an iterative finite-difference method with transparent boundary conditions," IEEE J. Lightwave Technol. vol. 13, no. 3, pp. 465-469, 1995.
    [20] H. Noro, and T. Nakayama, "A new approach to scalar and semivector mode analysis of optical waveguides," IEEE J. Lightwave Technol. vol. 14, no. 6, pp. 1546-1556, 1996
    [21] B. M. A. Rahman and J. B. Davies, "Vector-H finite element solution of GaAs/GaAlAs rib waveguides," IEE J. Proc. vol. 132, pp. 349-353, 1985.
    [22] K. Kawano, and T. Kitoh, “Introduction to optical waveguide analysis,” chapter 3. Wiley-Interscience, New York, 2001.
    [23] M. Koshiba, H. Saitoh, M. Eguchi, and K. Hirayama, “Simple scalar finite element approach to optical rib waveguides," IEE J. Proc. vol. 139, pp. 166-171, 1992.
    [24] S. V. Burke, “Spectral index method applied to coupled rib waveguides,"Electronics Lett., vol. 25, pp. 605-606.1989
    [25] K.KAWANO and T.KITOH, "Introduction to optical waveguide analysis," John Wiley, pp. 20-23,2001.
    [26] Francois Ladouceur, "Silica-based buried channel waveguides and devices," Chapman & Hall, pp. 31-32,1996.
    [27] G. M. Berry, S. V. Burke, C. J. Smartt, T. M. Benson, and P. C. Kendall, "Exact and variational Fourier transform methods for analysis of multilayered planar waveguides," IEE J. Proc.-Optoelectron., vol. 142, no. 1, pp. 66-75,1995.
    [28] E. Snitzer, “Cylindrical dielectric waveguide modes," J. Opt. Soc. Am., vol.51, pp. 491-498, 1961 .
    [29] E. A. Marcatili, "Dielectric rectangular waveguides and directional coupler for integrated optics," Bell Syst. Tech. J., vol. 48, pp. 2071-2102, 1969.
    [30] D. Gloge, "Weakly guiding fibers," Appl. Opt., vol. 10, pp. 2252-2258, 1971.
    [31] T. Tanaka and Y. Suematsu, "An exact analysis of cylindrical fiber with index distribution by matrix method and its application to focusing fiber," Trans. IECE Jpn., vol. E-59, no. 11, pp. 1-8, 1976.
    [32] K. Kawano, "Introduction and Application of Optical Coupling Systems to Optical Devices," 2nd ed., Gendai Kohgakusha, Tokyo, 1998.
    [33] K.S. Yee, "Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media", IEEE Trans. Antennas propagate., vol. AP-14, pp. 302-307, 1966.
    [34] Chung, Y. and Dagli, N. "An assessment of Finite Difference Beam Propagation Method." IEEE J. of Quantum Elrctron, QE-26, pp.1335-1339, 1990.
    [35] H.J.W.M. Hoekstra, G.J.M. Krijnen, and P.V. Lambeck, "Efficient interface conditions for the finite difference beam propagation method", IEEE J. Lightwave Technol., vol. 10, pp. 1352-1355, 1992.
    [36] Y. Chung, and N. Dagli. "Modeling of guide-wave optical components with efficient finite-difference beam propagation method.", in Tech. Dig. IEEE AP-S Int. Symp,, 1992,1992, vol. 1, pp.248-251.
    [37] J. Yaamaaucchi, J. Shibayama, and H. Nakano, "Modified finite-difference beam propagation method based on the generalized Douglas scheme for variable coefficients", Photon. Technol. Lett., vol. 7, pp.661-664, 1995.
    [38] O. C. Zienkiewitz, The Finite Element Method, 3rd ed.,McGraw-Hill, New York, 1973
    [39] Rahman, B. M. A. and Davis, J. B. "Finite-element solution of integrated optical waveguides." IEEE J. Lightwave Technol., vol. 2, pp.682-688, 1984.
    [40] Hayata, K., Koshiba, M., Egushi, M. and Suzuki, M. "Novel finite-element formulation without any spurious for dielectric waveguides" Electro. Lett., vol. 22, pp.295-296, 1986
    [41] M. Koshiba, H. Saitoh, M. Eguchi, and K. Hirayama, "Simple scalar finite element approach to optical waveguides," IEE Proc. J., vol. 139, pp. 166-171, 1992.
    [42] Y. Chung and N. Dagli, "A wide angle propagation technique using an explicit finite difference scheme," IEEE Photon. Technol. Lett., vol. 6, pp. 540-542, 1994.
    [43] G. R. Hadley, "Wide-angle beam propagation using Pade’ approximant operators," Opt. Lett., vol. 17, pp. 1426-1428, 1992.
    [44] G. R. Hadley, "A multistep method for wide- angle beam propagation," Opt. Lett., vol. 17, pp. 1743-1745, 1992.
    [45] I. Ilic, R. Scarmozzino, and R.M. Osgood, Jr., "Investigation of the Pade' approximant-based wide-angle beam propagation method for accurate modeling of waveguiding circuit:, J. Lightwave Technol., vol. 14, pp. 2813-2822,1996.
    [46] Likarn Wang, N. Huang, "A new numerical method for solving planar waveguide problems with arbitrary index profiles: TE mode solutions," IEEE J. of Quantum Electron, vol. 35, pp. 1351-1353, 1999.
    [47] Likarn Wang, C. S. Hsiao, "A matrix method for studying TM modes of optical planar waveguides with arbitrary index profiles," IEEE J. of Quantum Electron, vol. 37,pp.1654-1660,2001.
    [48] M. S. Stern, "Semivectorial polarized finite difference method for optical waveguides with arbitrary index profiles," IEE J. Proc. J, 1988, vol. 135, pp. 56-63.
    [49] P. Lusse, P. Stuwe, J. Schule, and H. G. Unger "Analysis of vectorial mode fields in optical waveguides by a new finite difference method," IEEE J. Lightwave Technol. vol. 12, no. 3, pp. 487-493, 1994.
    [50] G. Ronald Hadley, and R. E. Smith "Full-vector waveguide modeling using an iterative finite-difference method with transparent boundary conditions," IEEE J. Lightwave Technol. vol. 13, no. 3, pp. 465-469, 1995.
    [51] H. Noro, and T. Nakayama, "A new approach to scalar and semivector mode analysis of optical waveguides," IEEE J. Lightwave Technol. vol. 14, no. 6, pp. 1546-1556, 1996
    [52] B. M. A. Rahman and J. B. Davies, "Vector-H finite element solution of GaAs/GaAlAs rib waveguides," IEE J. Proc. J, 1985, vol. 132, pp. 349-353.
    [53] K. Kawano, and T. Kitoh, “Introduction to optical waveguide analysis,” chapter 3. Wiley-Interscience, New York, 2001.
    [54] M. Koshiba, H. Saitoh, M. Eguchi, and K. Hirayama, “Simple scalar finite element approach to optical rib waveguides," IEE J. Proc. J, 1992, vol. 139, pp. 166-171.
    [55] D.Yevick and B. Hermansson, "New formulations of the matrix beam propagation method: application to rib waveguides," IEEE J. Quantum Electron., vol. 25, no. 2. pp. 221-229, Feb. 1989.
    [56] Weiping Huang, Chenglin Xu, Sai-Tak Chu, and Sujeet K. Chaudhuri, "The finite-difference vector beam propagation method: analysis and assessment," IEEE J. Lightwave Technol.vol. 10, pp. 295-305, 1992
    [57] P. L. Liu, S. L. Yang, and D. M. Yuan, "The semivectorial beam propagation method," IEEE J. Quantum Electron., vol. 29, pp. 2639-2644, Oct. 1993.
    [58] Em. E. Kriezis and A. G. Papagiannakis, “A joint finite-difference and FFT full vectorial beam propagation scheme," IEEE J. Lightwave Technol.vol. 13, pp. 692-700, 1995.
    [59] S. V. Burke, “Spectral index method applied to coupled rib waveguides," Electronics Lett., 1989, vol. 25, pp. 605-606.
    [60] G. M. Berry, S. V. Burke, C. J. Smartt, T. M. Benson, and P. C. Kendall, "Analysis of multi-layered dielectric waveguides: A variational treatment," Electron Lett., 1994, vol. 30, pp. 2029-2031.
    [61] C. J. Smartt, T. M. Benson, and P. C. Kendall, " Exact operator method for the analysis of dielectric waveguides with application to integrated optics devices and laser facets," International Conference on Computation in electromagnetics, IEE Conf. Publ., 1994, 384, pp. 335-337.
    [62] G. M. Berry, S. V. Burke, C. J. Smartt, T. M. Benson, and P. C. Kendall, " Exact and variational Fourier transform methods for analysis of multilayered planar waveguides," IEE J. Proc.-Optoelectron., 1995, vol. 142, no. 1, pp. 66-75.
    [63] Likarn Wang, and N. Huang, "A new numerical method for solving planar waveguide problems with arbitrary index profiles: TE mode solutions," IEEE J. of Quantum Electron, vol. 35, pp. 1351-1353, 1999.
    [64] Likarn Wang, and C. S. Hsiao, "A matrix method for studying TM modes of optical planar waveguides with arbitrary index profiles," IEEE J. of Quantum Electron, vol. 37,pp.1654-1660, 2001.
    [65] V. N. Kublanovskaya, "On an application of Newton’s method to the determination of eigenvalues of -matrices," Soviet Math. Dokl. vol. 10, pp. 1240-1241, 1969.
    [66] C. H. Henry and B. H. Verbeek,” Solution of the scalar wave equation for arbitrarily shaped dielectric waveguides by two-dimensional Fourier analysis,” J. Lightwave Technol., vol. 7, pp. 308-313, 1989.
    [67] C. H. Henry and Y. Shani, ”Analysis of mode propagation in optical waveguide devices by Fourier expansion,” IEEE J. of Quantum Electron, vol. 27, pp. 523-530,1991.

    [68] A.G. Rickman and G.T. Reed, “Silicon-on-Insulator Optical Rib Waveguides: Loss, Mode Characteristics, Bends and Y-Junctions,” IEE Proc.-Optoelectron., vol. 141,no. 6, pp. 391-393, 1994
    [69] A. G. Rickman, G. T. Reed, and F. Namavar,”Silicon-on-Insulator Optical Rib
    Waveguide Loss and Mode Characteristics,” J. Lightwave Technol.,vol.12, pp.1771-1776,1994.
    [70] A. Cutolo, M. Iodice, P. Spirito, and L. Zeni,”Silicon Electro-Optic Modulator Based on a Three Terminal Device Integrated in a Low-Loss Single-Mode SOI Waveguide,” J. Lightwave Technol., vol. 15,pp.505-518, 1997.
    [71] G. Cocorullo, , F. G. D. Corte,, M. Iodice, I. Rendina, and P. M. Sarro,”Silicon-On-Silicon Rib Waveguides with a High-Confining Ion-Implanted Lower Cladding,” IEEE J. Selected Topics in Quantum Electron., vol. 4,pp. 983-989,1998.
    [72] E. Cassan, S. Laval, S. Lardenois, and A. Koster,”On-Chip Optical Interconnects With Compact and Low-Loss Light Distribution in Silicon-on-Insulator Rib Waveguides,” IEEE J. Selected Topics in Quantum Electron., vol. 9,pp.460-464, 2003.
    [73] M. Fritze, J. Knecht, C. Bozler, and C. Keast,” 3D Mode Converters for SOI Integrated Optics,” IEEE International Conference, pp. 165-166, 2nd October, 2002.
    [74] Laurent Vivien, Suzanne Laval, Eric Cassan, X. Le Roux, and Daniel Pascal. “2-D Taper for Low-Loss Coupling Between Polarization-Insensitive Microwaveguides and Single-Mode Optical Fibers,” J. Lightwave Technol., vol. 21, no. 10, pp. 1-5, 2003.
    [75] Richard A. Soref, Joachim Schmidtchen, and Klaus Petermann.“Large Single-Mode Rib Waveguides in and ,” IEEE J. Quantum Electron.,vol. 27, no. 8, pp. 1971-1974, 1991.
    [76] U. Fischer, T. Zinke, J.-R. Kroop, F. Arndt, and K. Petermann. “0.1 dB/cm Waveguide Losses in Single-Mode SOI Rib Waveguides,” IEEE Photon. Technol. Lett., vol. 8, no. 5, pp. 647-648, 1996.
    [77] K. Kawano and T. Kitoh. “Introduction to optical waveguide analysis,” John Wiley. Pp. 204-208,2001.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE