簡易檢索 / 詳目顯示

研究生: 謝易恭
論文名稱: 環境及生物樣品中奈米微粒偵測技術之研究
The determination of nano-particles in environmental and biological samples
指導教授: 王竹方
口試委員: 蔣本基
張怡怡
孫毓璋
李文智
王竹方
學位類別: 博士
Doctor
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 124
中文關鍵詞: 奈米微粒雷射剝蝕感應耦合電漿質譜儀電子式低壓衝擊器量子點半導體排放
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 奈米微粒定義為粒徑小於100 奈米的粒子,它具有高氣管沉積性、大的表面積、誘導發炎反應之特性及可能經由血液循環系統累積在多處器官造成健康危害。目前已知大氣中奈米微粒為人類主要的被動暴露於奈米微粒之途徑,因此,發展分析大氣中奈米微粒之技術成為評估奈米微粒健康危害時不可或缺的重要技術。研究中使用電子式低壓衝擊器(ELPI)採集奈米微粒,並嘗試發展以標準溶液滴在濾紙上模擬ELPI收集到之樣品,以此製作實驗室製備之標準濾紙樣品,後續以雷射剝蝕感應耦合電漿質譜儀(LA-ICP-MS)進行元素分析。研究結果顯示實驗室製備之標準濾紙所建立檢量線線性範圍極佳,與傳統之雙粒徑採樣器採樣後續以ICP-MS分析之比對結果證明本研究所發展的方法可靠性甚高,極具實用的價值。實驗中針對新竹科學園區及中部科學園區周界進行採樣,嘗試找出半導體業排放之特性元素。研究結果顯示細微粒之砷及矽可能來自於科學園區內半導體產業的排放,除了砷與矽外,空氣中微量元素如錳、鈷、鎳、銅、硒、銣、銀、鎘及銫亦為可能之半導體工廠排放元素。除分析大氣中奈米微粒外,研究亦將發展以LA-ICP-MS分析生物體內奈米微粒的分布狀況,實驗中用於注入生物體之奈米微粒包括掺雜釓改質之氧化鐵奈米微粒及硒化鎘/硫化鋅無機量子點(CdSe QDs),用以釐清奈米微粒進入生物體之反應及遷移狀況。研究中以LA-ICP-MS結合MATLAB建立元素分佈的生物影像技術,分析掺雜釓改質之氧化鐵奈米微粒注入小鼠腫瘤之分布及其濃度對於磁共振熱治療(MFH)的影響。研究結果顯示奈米微粒注入腫瘤後仍保持原本結構而未分解,其分布濃度正比於熱治療效果。此外,研究中亦探討CdSe QDs經靜脈注入及氣管灌注後在小鼠器官累積及分布情形,結果顯示靜脈注射後QDs累積在肝、脾及腎上腺,氣管灌注則僅累積於肺臟。由螢光顯微鏡觀察所得到的QDs位置與LA-ICP-MS之Cd-114影像呈現相當高的一致性;而從Cd-114與Se-82樣品中的訊號相關性及比值可做為評估QDs是否有降解現象。


    Table of contents Content Page Publications relevant to the scope of this thesis…………………………………….. i Abstract……………………………………………………………………………… ii Table of contents…………………………………………………………………….. v List of figures………………………………………………………………………... vii List of tables…………………………………………………………………………. xi Chapter 1 Introduction 1 Chapter 2 Elemental analysis of airborne particulate matter using an electrical low pressure impactor and laser ablaion inductively coupled plasma mass spectrometry 9 Chapter 3 The silicon determination in airborne particulate matter using an electrical low pressure impactor and laser ablation inductively coupled plasma mass spectrometry 30 Chapter 4 Determination of high-tech related toxic metals in ultrafine, fine and coarse airborne particles at Hsinchu Science Park 48 Chapter 5 Using LA-ICP-MS to bioimage multiple elements in mouse tumors after hyperthermia 65 Chapter 6 The biodistribution of CdSe quantum dots in mouse tissues: A laser ablation inductively coupled plasma mass spectrometry study 76 Chapter 7 Biointeractions of inhaled CdSe quantum dots in a mouse lung by using laser ablation inductively coupled plasma mass spectrometry 95 Chapter 8 Conclusions and recommendations 107 Reference 110 Appendix 124 List of figures Figure Page Fig. 1-1 Scope of the research………………………………………………………. 7 Fig. 1-2 Flowchart of the research…………………………………………………... 8 Fig. 2-1 Airborne particulates collected on the filters of ELPI stages (a) 1, (b) 3, (c) 8, and (d) 10………………………………………………………………………… 14 Fig. 2-2 Photographs of samples of a standard solution on the filter medium (a) before and (b) after evaporation of the solvent (water)…………………………….. 15 Fig. 2-3 Schematic representation of the laser grid pattern used to ablate a single spot on filter of sample C…………………………………………………………… 17 Fig. 2-4 Qualitative scanning spectrograms of the blank, standard, and real sample filters analyzed through LA-ICP-MS (operating conditions: laser fluence, 16.7 J cm−2; defocused distance, 1.5 mm)…………………………………………………. 19 Fig. 2-5 Responses of 75As ablated using the proposed laser grid patterns from the blank, standard, and real-sample filters……………………………………………... 20 Fig. 2-6 Total analyte signals from the blank filter (a), standard filter (b, 1st scan; c, 2nd scan), and samples A (d, 1st scan; e, 2nd scan), B(f, 1st scan; g, 2nd scan), and C (h, 1st scan; i, 2nd scan)……………………………………………………………… 21 Fig. 2-7 Standard addition calibration curves for As in the sample spots on the standard filter and the real-sample filters A, B, and C……………………………… 24 Fig. 2-8 Correlations between the PM10 and PM2.5 data obtained using dichotomous sampler (Dicho) and ELPI for Zn, Pb, and Cd in an aerosol sample collected in the Hsinchu area (n = 13)………………………………………………. 28 Fig. 3-1 Location of the study area………………………………………………….. 33 Fig. 3-2 Time-resolved signals of blank filter, standard filter (contains 64 ng of silicon), real sample (coarse) and NIST 2783……………………………………….. 37 Fig. 3-3 Calibration graph of 28Si for the laboratory-prepared standard filter……… 38 Fig. 3-4 Annual silicon concentration of ultrafine, fine and coarse airborne particles at HSP and CTSP from 2007 to 2011……………………………………… 41 Fig. 3-5 Characteristics of airborne silicon particle (a) daily concentrations of silicon in ultrafine, fine and coarse airborne particles; (b), (c) size distribution and cumulative mass fraction of silicon in airborne particles…………………………… 44 Fig. 3-5 Size distribution and cumulative mass fraction of silicon in airborne particles collected (a) in the afternoon on August 13 (b) in the evening on August 14 and (c) in the evening on August 15……………………………………………... 46 Fig. 4-1 Location of the study area…………………………………………………. 51 Fig. 4-2 Elemental concentration variations of (a) Ni, (b) Cd, (c) Cu, (d) As, (e) Ga, (f) In, and (g) Tl in different size fractions at HSP from 2007 to 2011 and the annual revenue at HSP…………………………………………………………..…... 58 Fig. 4-3 Mean mass size distributions of the elements collected at HSP. The values and error bars of elements are geometric means and standard derivation calculated from 35 samples except W, Mo, Sn and Se from 6 samples………………………… 60 Fig. 5-1 Photograph of the original tissue slice under an LA camera………………. 68 Fig. 5-2 Photograph of the tissue slice after Prussian blue staining………………… 68 Fig. 5-3 Photograph of the tissue slice after H&E staining…………………………. 69 Fig. 5-4 Mapping and ion intensities of (a) 56Fe and (b) 158Gd atoms. The dashed line indicates the path taken during the time-resolved analyses of Fe and Gd atoms. 71 Fig. 5-5 Mapping and ion intensities of C, P, S, Ni, Cu, and Zn elements. The dashed line indicates the path taken during the time-resolved analyses of C, P, S, Ni, Cu, and Zn atoms………………………………………………………………... 73 Fig. 5-6 Combined mapping of Ni, Cu, and Fe atoms………………………………. 74 Fig. 6-1 (a) the Cd-114 mapping image in spleen from LA-ICP-MS; (b) higher magnification of selected Cd-114 hot zone and its corresponding H&E stained image (c) and fluorescence image (d)………………………………………………. 82 Fig. 6-2 The intensity profiles of each element (from top to bottom, P-31, Cu-63, Zn-66, Fe-56, Cd-114, and Se-82, respectively) in spleen and their corresponding mapping images. Recorded intensity profiles were scanned along the indicated red lines………………………………………………………………………………….. 85 Fig. 6-3 (a) the Cd-114 mapping image in liver from LA-ICP-MS; (b) higher magnification of selected Cd-114 hot zone as shown in (a); and its corresponding H&E stained image (c); fluorescence images of selected area (d-f), and their corresponding H&E stained images (g-i)…………………………………………… 87 Fig. 6-4 The intensity profiles of each element (from top to bottom, P-31, Cu-63, Zn-66, Fe-56, Cd-114, and Se-82, respectively) in liver and their corresponding mapping images. Recorded intensity profiles were scanned along the indicated red lines………………………………………………………………………………….. 88 Fig. 6-5 (a) the Cd-114 mapping image in kidney from LA-ICP-MS; (b) higher magnification of selected Cd-114 hot zone as shown in (a); and its corresponding H&E stained image (c); fluorescence images of selected area (d)………………….. 91 Fig. 6-6 The intensity profiles of each element (from top to bottom, P-31, Cu-63, Zn-66, Fe-56, Cd-114, and Se-82, respectively) in kidney and their corresponding mapping images. Recorded intensity profiles were scanned along the indicated red lines………………………………………………………………………………….. 92 Fig. 7-1 (a) The fluorescence image of lung sample, where the yellow spots are the locations of quantum dots (b) the corresponding LA-ICP-MS Image…………........ 99 Fig. 7-2 The intensity profiles and corresponding LA-ICP-MS mapping image of (a) Cd-114 and (b) Se-82……………………………………………………………. 101 Fig. 7-3 The mapping images of each element observed in this study……………… 102 Fig. 7-4 (top) The H&E stained image pointing out the accumulation of lymphocytes and alveoli surrounded by accumulated macrophages. (bottom) Enlarged Cd-114 hot zones; (a) the distribution of Cd-114 in the lung section; (b) Enlarged view of the rectangular region indicated in panel (a); (c) corresponding H&E stained image of panel (b); (d) corresponding fluorescence image of panel (b); and (e) fluorescent image with the matrix fluorescence filtered out (greens in panel (d))…………………………………………………………………………….. 105 List of tables Table Page Table 2-1 Collecting strategies and size distributions for the ELPI and dichotomous samplers……………………………………………………………..... 13 Table 2-2 Optimized operating conditions for LA-ICP-MS………………………... 16 Table 2-3 Detection limits (3σ) for all analyte elements and correlation coefficients (r2) for the standard curves……………………………………………...................... 22 Table 2-4 RSDs (n = 5) and mean signal counts obtained through LA-ICP-MS for the blank, laboratory-prepared standard, and real sample (sample C) filters……….. 23 Table 2-5 Elemental contents (ng) obtained from samples B and C using external standard calibration (ESC) and standard addition (SA)…………………………….. 26 Table 3-1 Sampling information for sampling sites at the study area………………. 35 Table 3-2 Silicon concentrations (arithmetic mean ± SD; in ng m-3) of ultrafine, fine and coarse particles collected at CTSP and HSP………………………………. 39 Table 4-1 Sampling information for sampling sites at HSP………...………………. 53 Table 4-2 Elemental concentrations (arithmetic mean ± SD, in ng m−3) of ultrafine, fine and coarse particles collected at HSP (n = 117, except marked as *).. 55 Table 4-3 Comparisons of the metal total contents in the airborne particles at HSP with the literature values…………………………………………………………….. 62 Table 4-4 Mean concentrations in the size range of 0.03―0.99 μm of Mn, Ni, As, and Cd collected at HSP and its limit values………………………………………... 63 Table 5-1 Operating conditions for the line scan mode of the LA-ICP-MS system... 70 Table 6-1 The correlation between each monitored elements in spleen……………. 84 Table 6-2 The correlation between each monitored elements in liver……...………. 89 Table 6-3 The correlation between each monitored elements in kidney……………. 93 Table 6-4 The correlation coefficients of Cd-114 and Se-82, S-34 and C-13, S-34 and P-31, respectively……………………………………………………………….. 94 Table 7-1 The correlation between each element observed in this study….…….... 103

    1. Penttinen, P., et al., Ultrafine particles in urban air and respiratory health among adult asthmatics. European Respiratory Journal, 2001. 17(3): p. 428-435.
    2. Jamriska, M., L. Morawska, and D.S. Ensor, Control strategies for sub-micrometer particles indoors: model study of air filtration and ventilation. Indoor Air, 2003. 13(2): p. 96-105.
    3. Brook, R.D., et al., Air Pollution and Cardiovascular Disease. Circulation, 2004. 109(21): p. 2655-2671.
    4. Brown, J.S., K.L. Zeman, and W.D. Bennett, Ultrafine Particle Deposition and Clearance in the Healthy and Obstructed Lung. American Journal of Respiratory and Critical Care Medicine, 2002. 166(9): p. 1240-1247.
    5. Oberdörster, G., E. Oberdörster, and J. Oberdörster, Nanotoxicology: An Emerging Discipline Evolving from Studies of Ultrafine Particles. Environ Health Perspect, 2005. 113(7).
    6. Seaton, A., et al., Particulate air pollution and acute health effects. The Lancet, 1995. 345(8943): p. 176-178.
    7. Cass, G.R., et al., The chemical composition of atmospheric ultrafine particles. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 2000. 358(1775): p. 2581-2592.
    8. Chang, M.C.O., et al., Characterization of Fine Particulate Emissions from Casting Processes. Aerosol Science and Technology, 2005. 39(10): p. 947-959.
    9. Chung, A., J.D. Herner, and M.J. Kleeman, Detection of Alkaline Ultrafine Atmospheric Particles at Bakersfield, California. Environmental Science & Technology, 2001. 35(11): p. 2184-2190.
    10. Fang, G.-C., et al., Concentrations of nano and related ambient air pollutants at a traffic sampling site. Toxicology and Industrial Health, 2005. 21(9): p. 259-271.
    11. Fittschen, U.E.A., et al., A new technique for the deposition of standard solutions in total reflection X-ray fluorescence spectrometry (TXRF) using pico-droplets generated by inkjet printers and its applicability for aerosol analysis with SR-TXRF. Spectrochimica Acta Part B: Atomic Spectroscopy, 2006. 61(10–11): p. 1098-1104.
    12. Gligorovski, S., J.T. Van Elteren, and I. Grgić, A multi-element mapping approach for size-segregated atmospheric particles using laser ablation ICP-MS combined with image analysis. Science of The Total Environment, 2008. 407(1): p. 594-602.
    13. Herner, J.D., P.G. Green, and M.J. Kleeman, Measuring the Trace Elemental Composition of Size-Resolved Airborne Particles. Environmental Science & Technology, 2006. 40(6): p. 1925-1933.
    14. Lin, C.-C., et al., Characteristics of Metals in Nano/Ultrafine/Fine/Coarse Particles Collected Beside a Heavily Trafficked Road. Environmental Science & Technology, 2005. 39(21): p. 8113-8122.
    15. McKenzie, E.R., et al., Size dependent elemental composition of road-associated particles. Science of The Total Environment, 2008. 398(1–3): p. 145-153.
    16. Miranda, R. and E. Tomaz, Characterization of urban aerosol in Campinas, São Paulo, Brazil. Atmospheric Research, 2008. 87(2): p. 147-157.
    17. Ntziachristos, L., et al., Relationship between redox activity and chemical speciation of size-fractionated particulate matter. Particle and Fibre Toxicology, 2007. 4(1): p. 5.
    18. Wagner, A., J. Boman, and M.J. Gatari, Elemental analysis of size-fractionated particulate matter sampled in Göteborg, Sweden. Spectrochimica Acta Part B: Atomic Spectroscopy, 2008. 63(12): p. 1426-1431.
    19. Wagner, A. and M. Mages, Total-Reflection X-ray fluorescence analysis of elements in size-fractionated particulate matter sampled on polycarbonate filters — Composition and sources of aerosol particles in Göteborg, Sweden. Spectrochimica Acta Part B: Atomic Spectroscopy, 2010. 65(6): p. 471-477.
    20. Hughes, L.S., et al., Physical and Chemical Characterization of Atmospheric Ultrafine Particles in the Los Angeles Area. Environmental Science & Technology, 1998. 32(9): p. 1153-1161.
    21. Okuda, T., et al., Daily concentrations of trace metals in aerosols in Beijing, China, determined by using inductively coupled plasma mass spectrometry equipped with laser ablation analysis, and source identification of aerosols. Science of The Total Environment, 2004. 330(1–3): p. 145-158.
    22. Rauch, S., M. Lu, and G.M. Morrison, Heterogeneity of Platinum Group Metals in Airborne Particles. Environmental Science & Technology, 2000. 35(3): p. 595-599.
    23. Tanaka, S., et al., Rapid and simultaneous multi-element analysis of atmospheric particulate matter using inductively coupled plasma mass spectrometry with laser ablation sample introduction. Journal of Analytical Atomic Spectrometry, 1998. 13(2): p. 135-140.
    24. Wang, C.-F., et al., Determination of arsenic and vanadium in airborne related reference materials by inductively coupled plasma–mass spectrometry. Analytica Chimica Acta, 1999. 392(2–3): p. 299-306.
    25. Wang, C.-F., et al., Preparation of airborne particulate standards on PTFE-membrane filter for laser ablation inductively coupled plasma mass spectrometry. Analytica Chimica Acta, 1998. 368(1–2): p. 11-19.
    26. Ntziachristos, L., et al., Fine, ultrafine and nanoparticle trace element compositions near a major freeway with a high heavy-duty diesel fraction. Atmospheric Environment, 2007. 41(27): p. 5684-5696.
    27. Pekney, N.J., et al., Identification of sources of atmospheric PM at the Pittsburgh Supersite, Part I: Single particle analysis and filter-based positive matrix factorization. Atmospheric Environment, 2006. 40, Supplement 2(0): p. 411-423.
    28. Fittschen, U.E.A., et al., Characteristics of Picoliter Droplet Dried Residues as Standards for Direct Analysis Techniques. Analytical Chemistry, 2008. 80(6): p. 1967-1977.
    29. Yang, L., R.E. Sturgeon, and Z. Mester, Quantitation of Trace Metals in Liquid Samples by Dried-Droplet Laser Ablation Inductively Coupled Plasma Mass Spectrometry. Analytical Chemistry, 2005. 77(9): p. 2971-2977.
    30. Marple, V.A., K.L. Rubow, and S.M. Behm, A Microorifice Uniform Deposit Impactor (MOUDI): Description, Calibration, and Use. Aerosol Science and Technology, 1991. 14(4): p. 434-446.
    31. Chang, C.-Y., et al., Application of methods (sequential extraction procedures and high-pressure digestion method) to fly ash particles to determine the element constituents: A case study for BCR 176. Journal of Hazardous Materials, 2009. 163(2–3): p. 578-587.
    32. Chein, H., et al., Inorganic Acid Emission Factors of Semiconductor Manufacturing Processes. Journal of the Air & Waste Management Association, 2004. 54(2): p. 218-228.
    33. Xie, R.K., et al., Chemical characterization of individual particles (PM10) from ambient air in Guiyang City, China. Science of The Total Environment, 2005. 343(1–3): p. 261-272.
    34. Corathers, L.A., Minerals Yearbook. USGS, 2008: p. http://minerals.usgs.gov/minerals/pubs/commodity/silicon/myb1-2008-simet.pdf.
    35. Chiu, K.-H., et al., Distribution of Volatile Organic Compounds over a Semiconductor Industrial Park in Taiwan. Environmental Science & Technology, 2005. 39(4): p. 973-983.
    36. Hung, I.-F., et al., Spatial and temporal distribution of volatile organic compounds around an industrial park of Taiwan. Aerosol and Air Quality Research, 2005. 5(2): p. 141-153.
    37. Nian, H.-C., et al., Impact of inclement weather on the characteristics of volatile organic compounds in ambient air at the Hsinchu Science Park in Taiwan. Science of The Total Environment, 2008. 399(1–3): p. 41-49.
    38. Ta-Yuan, C., et al., Characterization of Volatile Organic Compounds in the Vicinity of an Optoelectronics Industrial Park in Taiwan. Journal of the Air & Waste Management Association, 2010. 60(1): p. 55-62.
    39. Tsai, J.H., et al., Concentration characteristics of VOCs and acids/bases in the gas phase and water-soluble ions in the particle phase at an electrical industry park during construction and mass production. Journal of Environmental Science and Health, Part A, 2011. 46(5): p. 540-551.
    40. Chein, H., et al., Evaluation of arsenical emission from semiconductor and opto-electronics facilities in Hsinchu, Taiwan. Atmospheric Environment, 2006. 40(10): p. 1901-1907.
    41. Suzuki, Y., et al., Accumulation of trace elements used in semiconductor industry in Formosan squirrel, as a bio-indicator of their exposure, living in Taiwan. Chemosphere, 2007. 68(7): p. 1270-1279.
    42. Tsai, C.-J., et al., Concentration Profiles of Acidic and Basic Air Pollutants Around an Industrial Park of Taiwan. Water, Air, & Soil Pollution, 2004. 151(1): p. 287-304.
    43. Hu, W.D., Determination of boron in high-purity silica using direct current plasma emission spectrometry. Analytica Chimica Acta, 1991. 245(0): p. 207-209.
    44. Krachler, M., et al., Influence of digestion procedures on the determination of rare earth elements in peat and plant samples by USN-ICP-MS. Journal of Analytical Atomic Spectrometry, 2002. 17(8): p. 844-851.
    45. Canepari, S., et al., Two-stage chemical fractionation method for the analysis of elements and non-volatile inorganic ions in PM10 samples: Application to ambient samples collected in Rome (Italy). Atmospheric Environment, 2006. 40(40): p. 7908-7923.
    46. Jalkanen, L.M. and E.K. Hasanen, Simple method for the dissolution of atmospheric aerosol samples for analysis by inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrometry, 1996. 11(5): p. 365-369.
    47. Dong, H.M. and V. Krivan, A solid sampling electrothermal atomic absorption spectrometry method for direct determination of silicon in titanium pieces. Journal of Analytical Atomic Spectrometry, 2003. 18(4): p. 367-371.
    48. Hornung, M. and V. Krivan, Determination of Silicon in Biological Tissue by Electrothermal Atomic Absorption Spectrometry Using Sampling of Original and Pre-ashed Samples. Journal of Analytical Atomic Spectrometry, 1997. 12(10): p. 1123-1130.
    49. Resano, M., et al., Direct determination of trace amounts of silicon in polyamides by means of solid sampling electrothermal vaporization inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrometry, 2002. 17(8): p. 897-903.
    50. Almeida, S.M., et al., Quality assurance in elemental analysis of airborne particles. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2003. 207(4): p. 434-446.
    51. Landsberger, S., et al., Intercomparison of IAEA airborne particulate matter reference material. Journal of Radioanalytical and Nuclear Chemistry, 1997. 215(1): p. 117-127.
    52. Marcazzan, G.M., et al., Composition, components and sources of fine aerosol fractions using multielemental EDXRF analysis. X-Ray Spectrometry, 2004. 33(4): p. 267-272.
    53. Mukhtar, A. and A. Limbeck, A new approach for the determination of silicon in airborne particulate matter using electrothermal atomic absorption spectrometry. Analytica Chimica Acta, 2009. 646(1–2): p. 17-22.
    54. Carugati, G., S. Rauch, and M. Kylander, Experimental assessment of a large sample cell for laser ablation-ICP-MS, and its application to sediment core micro-analysis. Microchimica Acta, 2010. 170(1): p. 39-45.
    55. Gagnon, J.E., et al., Quantitative analysis of silicate certified reference materials by LA-ICPMS with and without an internal standard. Journal of Analytical Atomic Spectrometry, 2008. 23(11): p. 1529-1537.
    56. Wang, C.-F., et al., The determination of silicon in airborne particulate matter by XRF and LA-ICP-MS. Journal of Radioanalytical and Nuclear Chemistry, 1999. 242(1): p. 97-103.
    57. Chin, C.-J., C.-F. Wang, and S.-L. Jeng, Multi-element analysis of airborne particulate matter collected on PTFE-membrane filters by laser ablation inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrometry, 1999. 14(4): p. 663-668.
    58. Cozzi, E., et al., Ultrafine particulate matter exposure augments ischemia-reperfusion injury in mice. American Journal of Physiology - Heart and Circulatory Physiology, 2006. 291(2): p. H894-H903.
    59. Lu, S., et al., Physicochemical characterization and cytotoxicity of ambient coarse, fine, and ultrafine particulate matters in Shanghai atmosphere. Atmospheric Environment, 2011. 45(3): p. 736-744.
    60. Voutsa, D. and C. Samara, Labile and bioaccessible fractions of heavy metals in the airborne particulate matter from urban and industrial areas. Atmospheric Environment, 2002. 36(22): p. 3583-3590.
    61. IARC and I.A.f.R.o. Cancer, Silica and some silicates. IARC Monographs on the Evaluation of Carcinogenic Risk of Chemicals to Humans, 1997. 42: p. 289.
    62. Ding, M., et al., Diseases caused by silica: mechanisms of injury and disease development. International Immunopharmacology, 2002. 2(2–3): p. 173-182.
    63. Han, B., et al., Adverse Effect of Nano-Silicon Dioxide on Lung Function of Rats with or without Ovalbumin Immunization. PLoS ONE, 2011. 6(2): p. e17236.
    64. Hsieh, Y.-K., et al., Elemental analysis of airborne particulate matter using an electrical low-pressure impactor and laser ablation/inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrometry, 2011. 26(7): p. 1502-1508.
    65. Viana, M., et al., Source apportionment of particulate matter in Europe: A review of methods and results. Journal of Aerosol Science, 2008. 39(10): p. 827-849.
    66. Yu, D., et al., Use of elemental size distributions in identifying particle formation modes. Proceedings of the Combustion Institute, 2007. 31(2): p. 1921-1928.
    67. Zhang, L., Y. Ninomiya, and T. Yamashita, Formation of submicron particulate matter (PM1) during coal combustion and influence of reaction temperature. Fuel, 2006. 85(10–11): p. 1446-1457.
    68. Pakkanen, T.A., et al., Use of atmospheric elemental size distributions in estimating aerosol sources in the Helsinki area. Atmospheric Environment, 2001. 35(32): p. 5537-5551.
    69. Araujo, J.A., et al., Ambient Particulate Pollutants in the Ultrafine Range Promote Early Atherosclerosis and Systemic Oxidative Stress. Circulation Research, 2008. 102(5): p. 589-596.
    70. Berntsen, P., et al., Biomechanical effects of environmental and engineered particles on human airway smooth muscle cells. Journal of The Royal Society Interface, 2010. 7(Suppl 3): p. S331-S340.
    71. Block, M.L. and L. Calderón-Garcidueñas, Air pollution: mechanisms of neuroinflammation and CNS disease. Trends in Neurosciences, 2009. 32(9): p. 506-516.
    72. Calderón-Garcidueñas, L., et al., Exposure to severe urban air pollution influences cognitive outcomes, brain volume and systemic inflammation in clinically healthy children. Brain and Cognition, 2011. 77(3): p. 345-355.
    73. Helble, J.J., et al., Combustion Aerosols: Factors Governing Their Size and Composition and Implications to Human Health. Journal of the Air & Waste Management Association, 2000. 50(9): p. 1619-1622.
    74. Valavanidis, A., K. Fiotakis, and T. Vlachogianni, Airborne Particulate Matter and Human Health: Toxicological Assessment and Importance of Size and Composition of Particles for Oxidative Damage and Carcinogenic Mechanisms. Journal of Environmental Science and Health, Part C, 2008. 26(4): p. 339-362.
    75. Xu, X., et al., Long-term Exposure to Ambient Fine Particulate Pollution Induces Insulin Resistance and Mitochondrial Alteration in Adipose Tissue. Toxicological Sciences, 2011. 124(1): p. 88-98.
    76. Ayrault, S., et al., Atmospheric trace element concentrations in total suspended particles near Paris, France. Atmospheric Environment, 2010. 44(30): p. 3700-3707.
    77. Danadurai, K.S.K., et al., Trace elemental analysis of airborne particulate matter using dynamic reaction cell inductively coupled plasma – mass spectrometry: Application to monitoring episodic industrial emission events. Analytica Chimica Acta, 2011. 686(1–2): p. 40-49.
    78. Hueglin, C., et al., Chemical characterisation of PM2.5, PM10 and coarse particles at urban, near-city and rural sites in Switzerland. Atmospheric Environment, 2005. 39(4): p. 637-651.
    79. Moreno, T., et al., Manganese in the urban atmosphere: identifying anomalous concentrations and sources. Environmental Science and Pollution Research, 2011. 18(2): p. 173-183.
    80. Witt, M.L.I., et al., Aerosol trace metals, particle morphology and total gaseous mercury in the atmosphere of Oxford, UK. Atmospheric Environment, 2010. 44(12): p. 1524-1538.
    81. Hsu, S.-C., et al., Tungsten and other heavy metal contamination in aquatic environments receiving wastewater from semiconductor manufacturing. Journal of Hazardous Materials, 2011. 189(1–2): p. 193-202.
    82. Han, B.-C. and T.-C. Hung, Green oysters caused by copper pollution on the Taiwan coast. Environmental Pollution, 1990. 65(4): p. 347-362.
    83. Jeng, M.-S., et al., Mussel Watch: a review of Cu and other metals in various marine organisms in Taiwan, 1991–98. Environmental Pollution, 2000. 110(2): p. 207-215.
    84. Lin, S. and I.J. Hsieh, Occurrences of Green Oyster and Heavy Metals Contaminant Levels in the Sien-San Area, Taiwan. Marine Pollution Bulletin, 1999. 38(11): p. 960-965.
    85. Yang, J.-L. and H.-C. Chen, Effects of gallium on common carp (Cyprinus carpio): acute test, serum biochemistry, and erythrocyte morphology. Chemosphere, 2003. 53(8): p. 877-882.
    86. Chou, W.-C., C.-P. Chio, and C.-M. Liao, Assessing airborne PM-bound arsenic exposure risk in semiconductor manufacturing facilities. Journal of Hazardous Materials, 2009. 167(1–3): p. 976-986.
    87. Tanaka, A., Toxicity of indium arsenide, gallium arsenide, and aluminium gallium arsenide. Toxicology and Applied Pharmacology, 2004. 198(3): p. 405-411.
    88. Tanaka, A., et al., Review of pulmonary toxicity of indium compounds to animals and humans. Thin Solid Films, 2010. 518(11): p. 2934-2936.
    89. Chen, H.W., Exposure and Health Risk of Gallium, Indium, and Arsenic from Semiconductor Manufacturing Industry Workers. Bulletin of Environmental Contamination and Toxicology, 2007. 78(2): p. 123-127.
    90. Hwang, Y.-H., et al., Monitoring of arsenic exposure with speciated urinary inorganic arsenic metabolites for ion implanter maintenance engineers. Environmental Research, 2002. 90(3): p. 207-216.
    91. Kulmala, M., et al., Formation and growth rates of ultrafine atmospheric particles: a review of observations. Journal of Aerosol Science, 2004. 35(2): p. 143-176.
    92. Krewski, D., et al., Mortality and Long-Term Exposure to Ambient Air Pollution: Ongoing Analyses Based on the American Cancer Society Cohort. Journal of Toxicology and Environmental Health, Part A, 2005. 68(13-14): p. 1093-1109.
    93. Pope Iii, C.A., et al., Lung Cancer, Cardiopulmonary Mortality, and Long-term Exposure to Fine Particulate Air Pollution. JAMA: The Journal of the American Medical Association, 2002. 287(9): p. 1132-1141.
    94. Donaldson, K., X.Y. Li, and W. MacNee, Ultrafine (nanometre) particle mediated lung injury. Journal of Aerosol Science, 1998. 29(5–6): p. 553-560.
    95. Oberdorster, G., et al., Role of the alveolar macrophage in lung injury: studies with ultrafine particles. Environmental health perspectives, 1992. 97: p. 193-9.
    96. Do, T.-M., et al., Metals present in ambient air before and after a fireworks festival in Yanshui, Tainan, Taiwan. Aerosol and Air Quality Research, 2012. in press.
    97. Englyst, V., et al., Lung cancer risks among lead smelter workers also exposed to arsenic. Science of The Total Environment, 2001. 273(1–3): p. 77-82.
    98. Pinto, J.P., et al., Czech Air Quality Monitoring and Receptor Modeling Study. Environmental Science & Technology, 1998. 32(7): p. 843-854.
    99. Querol, X., et al., Source origin of trace elements in PM from regional background, urban and industrial sites of Spain. Atmospheric Environment, 2007. 41(34): p. 7219-7231.
    100. Utsunomiya, S., et al., Direct Identification of Trace Metals in Fine and Ultrafine Particles in the Detroit Urban Atmosphere. Environmental Science & Technology, 2004. 38(8): p. 2289-2297.
    101. Marcazzan, G.M., et al., Characterisation of PM10 and PM2.5 particulate matter in the ambient air of Milan (Italy). Atmospheric Environment, 2001. 35(27): p. 4639-4650.
    102. Swietlicki, E., et al., Urban air pollution source apportionment using a combination of aerosol and gas monitoring techniques. Atmospheric Environment, 1996. 30(15): p. 2795-2809.
    103. Goldberg, S., H.S. Forster, and C.L. Godfrey, Molybdenum Adsorption on Oxides, Clay Minerals, and Soils. Soil Sci. Soc. Am. J. 60(2): p. 425-432.
    104. WANG, et al., Characteristics of road dust from different sampling sites in northern Taiwan. Vol. 55. 2005, Pittsburgh, PA, ETATS-UNIS: Journal of the Air & Waste Management Association. 9.
    105. Sheppard, P.R., et al., Elevated tungsten and cobalt in airborne particulates in Fallon, Nevada: Possible implications for the childhood leukemia cluster. Applied Geochemistry, 2006. 21(1): p. 152-165.
    106. da Silva, L.I.D., et al., Traffic and catalytic converter – Related atmospheric contamination in the metropolitan region of the city of Rio de Janeiro, Brazil. Chemosphere, 2008. 71(4): p. 677-684.
    107. Kuo, Y.-M., H.-F. Hung, and T.-T. Yang, Chemical Compositions of PM2.5 in Residential Homes of Southern Taiwan. Aerosol and Air Quality Research, 2007. 7(3): p. 14.
    108. Bell, M.L., et al., Spatial and Temporal Variation in PM<sub>2.5</sub> Chemical Composition in the United States for Health Effects Studies. Environ Health Perspect, 2007. 115(7).
    109. Gilchrist RK, M.R., Shorey WD, Hanselman RC, Parrot JC, Taylor CB, Selective inductive heating of lymph nodes. Ann Surg, 1957. 146: p. 10.
    110. Jordan, A., et al., Magnetic fluid hyperthermia (MFH): Cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles. Journal of Magnetism and Magnetic Materials, 1999. 201(1–3): p. 413-419.
    111. Johannsen, M., et al., Thermotherapy of Prostate Cancer Using Magnetic Nanoparticles: Feasibility, Imaging, and Three-Dimensional Temperature Distribution. European Urology, 2007. 52(6): p. 1653-1662.
    112. Baker, I., et al., Heat deposition in iron oxide and iron nanoparticles for localized hyperthermia. Journal of Applied Physics, 2006. 99(8): p. 08H106-3.
    113. Brusentsova, T.N., et al., Synthesis and investigation of magnetic properties of Gd-substituted Mn–Zn ferrite nanoparticles as a potential low-TC agent for magnetic fluid hyperthermia. Journal of Magnetism and Magnetic Materials, 2005. 293(1): p. 298-302.
    114. Chen, S., C.-l. Chiang, and S. Hsieh, Simulating physiological conditions to evaluate nanoparticles for magnetic fluid hyperthermia (MFH) therapy applications. Journal of Magnetism and Magnetic Materials, 2010. 322(2): p. 247-252.
    115. Fortin, J.-P., et al., Size-Sorted Anionic Iron Oxide Nanomagnets as Colloidal Mediators for Magnetic Hyperthermia. Journal of the American Chemical Society, 2007. 129(9): p. 2628-2635.
    116. Jordan, A., et al., Inductive heating of ferrimagnetic particles and magnetic fluids: Physical evaluation of their potential for hyperthermia. International Journal of Hyperthermia, 1993. 9(1): p. 51-68.
    117. Kim, D.H., et al., Surface-modified magnetite nanoparticles for hyperthermia: Preparation, characterization, and cytotoxicity studies. Current Applied Physics, 2006. 6, Supplement 1(0): p. e242-e246.
    118. Zhao, D.-L., et al., Preparation and coercivity and saturation magnetization dependence of inductive heating property of Fe3O4 nanoparticles in an alternating current magnetic field for localized hyperthermia. Journal of Alloys and Compounds, 2009. 469(1–2): p. 215-218.
    119. Cantillon-Murphy, P., et al., Proposing magnetic nanoparticle hyperthermia in low-field MRI. Concepts in Magnetic Resonance Part A, 2010. 36A(1): p. 36-47.
    120. Lemke, A.J., et al., MRI after magnetic drug targeting in patients with advanced solid malignant tumors. European Radiology, 2004. 14(11): p. 1949-1955.
    121. Mariagrazia Di Marco, C.S., Marc Port, Irene Guilbert, Patrick Couvreur, Catherine Dubernet, Physicochemical characterization of ultrasmall superparamagnetic iron oxide particles (USPIO) for biomedical application as MRI contrast agents. Int J Nanomedicine, 2007. 2(4): p. 13.
    122. Reinl, H.M., et al., Ferrite-enhanced MRI monitoring in hyperthermia. Magnetic Resonance Imaging, 2005. 23(10): p. 1017-1020.
    123. Chen, Y.-C., et al., The inhibitory effect of superparamagnetic iron oxide nanoparticle (Ferucarbotran) on osteogenic differentiation and its signaling mechanism in human mesenchymal stem cells. Toxicology and Applied Pharmacology, 2010. 245(2): p. 272-279.
    124. Jing, X.-h., et al., In vivo MR imaging tracking of magnetic iron oxide nanoparticle labeled, engineered, autologous bone marrow mesenchymal stem cells following intra-articular injection. Joint Bone Spine, 2008. 75(4): p. 432-438.
    125. Zvyagin, A.V., et al., Imaging of zinc oxide nanoparticle penetration in human skin in vitro and in vivo. Journal of Biomedical Optics, 2008. 13(6): p. 064031-9.
    126. Mesjasz-Przybyłowicz, J. and W.J. Przybyłowicz, Micro-PIXE in plant sciences: Present status and perspectives. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2002. 189(1–4): p. 470-481.
    127. McDonnell, L.A. and R.M.A. Heeren, Imaging mass spectrometry. Mass Spectrometry Reviews, 2007. 26(4): p. 606-643.
    128. Becker, J.S., Bioimaging of metals in brain tissue from micrometre to nanometre scale by laser ablation inductively coupled plasma mass spectrometry: State of the art and perspectives. International Journal of Mass Spectrometry, 2010. 289(2–3): p. 65-75.
    129. Becker, J.S., et al., Copper, zinc, phosphorus and sulfur distribution in thin section of rat brain tissues measured by laser ablation inductively coupled plasma mass spectrometry: possibility for small-size tumor analysis. Journal of Analytical Atomic Spectrometry, 2005. 20(9): p. 912-917.
    130. Becker, J.S., et al., Imaging of Copper, Zinc, and Other Elements in Thin Section of Human Brain Samples (Hippocampus) by Laser Ablation Inductively Coupled Plasma Mass Spectrometry. Analytical Chemistry, 2005. 77(10): p. 3208-3216.
    131. Jackson, B., et al., Elemental mapping and quantitative analysis of Cu, Zn, and Fe in rat brain sections by laser ablation ICP-MS. Analytical and Bioanalytical Chemistry, 2006. 384(4): p. 951-957.
    132. Santos, M.C., et al., Biomonitoring of metal contamination in a marine prosobranch snail (Nassarius reticulatus) by imaging laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Talanta, 2009. 80(2): p. 428-433.
    133. Zoriy, M.V., et al., Comparative imaging of P, S, Fe, Cu, Zn and C in thin sections of rat brain tumor as well as control tissues by laser ablation inductively coupled plasma mass spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 2008. 63(3): p. 375-382.
    134. Matusch, A., et al., Cerebral bioimaging of Cu, Fe, Zn, and Mn in the MPTP mouse model of Parkinson’s disease using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Journal of The American Society for Mass Spectrometry, 2010. 21(1): p. 161-171.
    135. Hare, D., et al., Elemental bio-imaging of melanoma in lymph node biopsies. Analyst, 2009. 134(3): p. 450-453.
    136. Seuma, J., et al., Combination of immunohistochemistry and laser ablation ICP mass spectrometry for imaging of cancer biomarkers. PROTEOMICS, 2008. 8(18): p. 3775-3784.
    137. Drake, P., et al., Gd-doped iron-oxide nanoparticles for tumour therapy via magnetic field hyperthermia. Journal of Materials Chemistry, 2007. 17(46): p. 4914-4918.
    138. Costello, L.C., et al., Role of zinc in the pathogenesis and treatment of prostate cancer: critical issues to resolve. Prostate Cancer Prostatic Dis, 0000. 7(2): p. 111-117.
    139. Akçil, E., G. Yavuz, and M. Koçak, Effects of inflammation and anti-inflammatory treatment on serum trace elements concentrations. Biological Trace Element Research, 2003. 93(1): p. 95-103.
    140. Milanino, R., et al., Copper and zinc status in rats with acute inflammation: focus on the inflamed area. Inflammation Research, 1988. 24(3): p. 356-364.
    141. Hall, D.M., et al., Splanchnic tissues undergo hypoxic stress during whole body hyperthermia. American Journal of Physiology - Gastrointestinal and Liver Physiology, 1999. 276(5): p. G1195-G1203.
    142. Pani, G., T. Galeotti, and P. Chiarugi, Metastasis: cancer cell’s escape from oxidative stress. Cancer and Metastasis Reviews, 2010. 29(2): p. 351-378.
    143. Nielsen, F.H., C.D. Hunt, and E.O. Uthus, INTERACTIONS BETWEEN ESSENTIAL TRACE AND ULTRATRACE ELEMENTS. Annals of the New York Academy of Sciences, 1980. 355(1): p. 152-164.
    144. Cassagneau, T., T.E. Mallouk, and J.H. Fendler, Layer-by-Layer Assembly of Thin Film Zener Diodes from Conducting Polymers and CdSe Nanoparticles. Journal of the American Chemical Society, 1998. 120(31): p. 7848-7859.
    145. Lee, S.-H.A., et al., Electron transfer kinetics in water splitting dye-sensitized solar cells based on core-shell oxide electrodes. Faraday Discussions, 2012. 155(0): p. 165-176.
    146. Youngblood, W.J., et al., Visible Light Water Splitting Using Dye-Sensitized Oxide Semiconductors. Accounts of Chemical Research, 2009. 42(12): p. 1966-1973.
    147. Zhao, Y., et al., Anodic Deposition of Colloidal Iridium Oxide Thin Films from Hexahydroxyiridate(IV) Solutions. Small, 2011. 7(14): p. 2087-2093.
    148. Guo, X., et al., Facile access to versatile fluorescent carbon dots toward light-emitting diodes. Chemical Communications, 2012. 48(21): p. 2692-2694.
    149. Jacobsson, T.J. and T. Edvinsson, Absorption and Fluorescence Spectroscopy of Growing ZnO Quantum Dots: Size and Band Gap Correlation and Evidence of Mobile Trap States. Inorganic Chemistry, 2011. 50(19): p. 9578-9586.
    150. Srivastava, B.B., S. Jana, and N. Pradhan, Doping Cu in Semiconductor Nanocrystals: Some Old and Some New Physical Insights. Journal of the American Chemical Society, 2010. 133(4): p. 1007-1015.
    151. Bouzigues, C., T. Gacoin, and A. Alexandrou, Biological Applications of Rare-Earth Based Nanoparticles. ACS Nano, 2011. 5(11): p. 8488-8505.
    152. Depalo, N., et al., Biofunctionalization of Anisotropic Nanocrystalline Semiconductor–Magnetic Heterostructures. Langmuir, 2011. 27(11): p. 6962-6970.
    153. Song, E.-Q., et al., Fluorescent-Magnetic-Biotargeting Multifunctional Nanobioprobes for Detecting and Isolating Multiple Types of Tumor Cells. ACS Nano, 2011. 5(2): p. 761-770.
    154. Wu, C., et al., Bioconjugation of Ultrabright Semiconducting Polymer Dots for Specific Cellular Targeting. Journal of the American Chemical Society, 2010. 132(43): p. 15410-15417.
    155. Huang, X., et al., The Shape Effect of Mesoporous Silica Nanoparticles on Biodistribution, Clearance, and Biocompatibility in Vivo. ACS Nano, 2011. 5(7): p. 5390-5399.
    156. Derfus, A.M., W.C.W. Chan, and S.N. Bhatia, Probing the Cytotoxicity of Semiconductor Quantum Dots. Nano Letters, 2003. 4(1): p. 11-18.
    157. Yildirimer, L., et al., Toxicology and clinical potential of nanoparticles. Nano Today, 2011. 6(6): p. 585-607.
    158. Liu, Q., et al., Sub-10 nm Hexagonal Lanthanide-Doped NaLuF4 Upconversion Nanocrystals for Sensitive Bioimaging in Vivo. Journal of the American Chemical Society, 2011. 133(43): p. 17122-17125.
    159. Sato, K., et al., Size-Tunable Silicon/Iron Oxide Hybrid Nanoparticles with Fluorescence, Superparamagnetism, and Biocompatibility. Journal of the American Chemical Society, 2011. 133(46): p. 18626-18633.
    160. Rojas, S., et al., Biodistribution of Amino-Functionalized Diamond Nanoparticles. In Vivo Studies Based on 18F Radionuclide Emission. ACS Nano, 2011. 5(7): p. 5552-5559.
    161. Tan, A., et al., Quantum dots and carbon nanotubes in oncology: a review on emerging theranostic applications in nanomedicine. Nanomedicine, 2011. 6(6): p. 1101-1114.
    162. Su, C.K., et al., In Vivo Monitoring of Quantum Dots in the Extracellular Space Using Push−Pull Perfusion Sampling, Online In-Tube Solid Phase Extraction, and Inductively Coupled Plasma Mass Spectrometry. Analytical Chemistry, 2010. 82(17): p. 7096-7102.
    163. Lutsenko, S., et al., Function and Regulation of Human Copper-Transporting ATPases. Physiological Reviews, 2007. 87(3): p. 1011-1046.
    164. Becker, J.S., et al., Evidence of near-field laser ablation inductively coupled plasma mass spectrometry (NF-LA-ICP-MS) at nanometre scale for elemental and isotopic analysis on gels and biological samples. Journal of Analytical Atomic Spectrometry, 2006. 21(1): p. 19-25.
    165. Navarro, D.A., et al., Differences in Soil Mobility and Degradability between Water-Dispersible CdSe and CdSe/ZnS Quantum Dots. Environmental Science & Technology, 2011. 45(15): p. 6343-6349.
    166. Zhu, Z.-J., et al., Stability of quantum dots in live cells. Nat Chem, 2011. 3(12): p. 963-968.
    167. Ho, C.-C., et al., Quantum dot 705, a cadmium-based nanoparticle, induces persistent inflammation and granuloma formation in the mouse lung. Nanotoxicology. 0(0): p. 1-11.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE