研究生: |
李昭翰 Lee, Chao-Han |
---|---|
論文名稱: |
無變壓器型之四倍壓直流轉換器建模與分析 Modeling and Analysis of a Novel Transformerless Voltage Quadrupler DC Converter |
指導教授: |
潘晴財
Pan, Ching-Tsai |
口試委員: |
林昇甫
Lin, Sheng-Fuu 江茂欽 Jiang, Maoh-Chin 陳政裕 Chen, Cheng-Yu 鄒應嶼 Tzou, Ying-Yu |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
中文關鍵詞: | 二倍壓轉換器 、高升壓比 、無變壓器型 、四倍壓轉換器 、低開關跨壓 |
外文關鍵詞: | Voltage Doubler, High Step-Up Ratio,, Transformerless, Voltage Quadrupler, Low Switch Voltage Stress |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
高壓直流轉換器現今已廣泛使用於許多高壓應用場合,然而現有二倍壓轉換器受限於升壓比不足,較不適用於需更高電壓輸出之應用。若採用多級串接之方式以提高電壓增益比,但如此將使其整體轉換效率低落且增加電路複雜度。基於上述理由,本論文之主要目的即為提出一新型高效率四倍壓直流轉換器。
本論文的主要貢獻有三點。首先,本文提出一單級新型無變壓器型四倍壓直流轉換器,該新型轉換器具有高升壓比、低開關跨壓與高效率等特點。此外,該新型轉換器不需添加額外控制電路,即具有自動均流之優點。第二點貢獻則是針對新型轉換器直流電路特性進行分析,且進一步推導出小訊號數學模型。第三點貢獻則依據理論分析的結果,實際製作一輸入電壓25V、輸出電壓400V以及輸出功率400W之雛型系統以驗證新型轉換器的可行性。經由電路模擬與實測結果顯示本論文所研製之新型轉換器,其主動開關與二極體跨壓分別為輸出電壓的四分之一與二分之一,其電源轉換效率於120W至400W的負載情況下均為93%以上,負載在120W時效率最高可達到95%,以此驗證該新型轉換器之可行性與優越性。最後,本文亦提出一具隔離特性之四倍壓轉換器。
High voltage DC converters are widely used in various applications to provide a high output DC voltage. However, the existing voltage doubler is not sufficient for some much higher voltage applications. Although, one can cascade more stages to achieve the desired voltage level, however, the resulting complex topology will result in less efficiency and reliability. Hence, the major motivation of this thesis is to propose a high efficiency voltage quadrupler DC converter.
In fact, the major contributions of this thesis may be summarized as follows. First, a single stage transformerless voltage quadrupler DC converter is proposed for achieving much higher voltage gain, less voltage stress of switches and higher efficiency. In addition, the proposed converter possesses automatic current sharing capability without adding any extra component. Second, mathematical model of the proposed converter is derived and fundamental characteristics of the new converter are analyzed. Third, a 400W rating prototype with 25V input and 400V output is constructed for verifying the feasibility of the prototype converter. It is seen that the voltage stress of the active switches and the diodes are equal to quarter and half of the output voltage respectively. The resulting efficiency can be maintained above 93% as the load is varied from 120W to 400W, and the highest efficiency of 95% is achieved at 120W. Both simulation and experimental results indeed verify the effectiveness of the proposed converter. Finally, the extended isolated version of proposed quadrupler converter is also presented in this thesis.
[1] S. R. Bull, “Renewable energy today and tomorrow,” Proceedings of the IEEE, Vol. 89, No. 8, pp. 1216-1226, Aug. 2001.
[2] G. Connor and H. W. Whittington, “A vision of true costing [renewable energy],” Engineering Science and Education Journal, Vol. 10, No. 1, pp. 4-12, Feb. 2001.
[3] M. Begovic, A. Pregelj, A. Rohatgi, and C. Honsberg, “Green power: status and perspectives,” Proceedings of the IEEE, Vol. 89, No. 12, pp. 1734-1743, Dec. 2001.
[4] H. Falk, “Prolog to renewable energy today and tomorrow,” Proceedings of the IEEE, Vol. 89, No. 8, pp. 1214-1215, Aug. 2001.
[5] T. Gilchrist, “Fuel cell to the fore,” IEEE Spectrum, Vol. 35, No. 11, pp.35-40, 1998.
[6] M. W. Ellis, M. R. Von Spakovsky, and D. J. Nelson, “Fuel cell system: efficient, flexible energy conversion for the 21st century,” Proceedings of the IEEE, Vol. 89, No. 12, pp. 1808-1818, 2001.
[7] F. Blaabjerg, Z. Chen, and S. B. Kjaer, “Power electronics as efficient interface in dispersed power generation systems,” IEEE Trans. Power Electronics, Vol. 19, No. 5, pp. 1184-1194, 2004.
[8] R. J. Wai and R. Y. Duan, “High-efficiency power conversion for low power fuel cell generation system,” IEEE Trans. on Power Electronics, Vol. 20, No. 4, pp. 847-856, Jul. 2005.
[9] J. S. Lai and Douglas J. Nelson, “Energy management power converters in hybrid electric and fuel cell vehicles,” Proceedings of the IEEE, Vol. 95, No. 4, pp. 766-777, Apr. 2007.
[10] R. J. Wai, W. H. Wang, and C. Y Lin, “High-performance stand-alone photovoltaic generation system,” IEEE Trans. on Industrial Electronics, Vol. 55, No. 1, pp. 240-250, Jan. 2008.
[11] R. J. Wai and W. H. Wang, “Grid-connected photovoltaic generation system,” IEEE Trans. on Circuits and Systems I: Fundamental Theory and Applications, Vol. 55, No. 3, pp. 953-964, Apr. 2008
[12] T. J. Liang, and K. C. Tseng, “Analysis of integrated boost-flyback step-up converter,” IEE Proceedings-Electric Power Applications, Vol. 152, No. 2, pp. 217-225, Mar. 2005.
[13] K. C. Tseng, and T. J. Liang, “Novel high-efficiency step-up converter,” IEE Proceedings-Electric Power Applications, Vol. 151, No. 2, pp. 182-190, Mar. 2004.
[14] O. Krykunov, “Analysis of the extended forward converter for fuel cell applications,” IEEE International Symposium on Industrial Electronics, pp. 661-666, 2007.
[15] R. J. Wai, C. Y. Lin, R. Y. Duan, and Y. R. Chang, “High-efficiency dc-dc converter with high voltage gain and reduced switch stress,” IEEE Trans. on Industrial Electronics, Vol. 54, No. 1, pp. 354-364, Feb. 2007.
[16] S. K. Changchien, T. J. Liang, J. F. Chen, and L. S. Yang, “Step-up dc-dc converter by coupled inductor and voltage-lift technique,” IET Power Electronics , Vol. 3, Iss. 3, pp. 369-378, 2010.
[17] S. K. Changchien, T. J. Liang, J. F. Chen, and L. S. Yang, “Novel high step-up dc-dc converter for fuel cell energy conversion system,” IEEE Trans. on Industrial Electronics, Vol. 57, No. 6, pp. 2007-2017, Jun. 2010.
[18] S. V. Araujo, R. P. Torrico-Bascope, and G. V. Torrico-Bascope, “Highly efficient high step-up converter for fuel-cell power processing based on three-state commutation cell,” IEEE Trans. on Industrial Electronics, Vol. 57, No. 6, pp. 1987-1997, Jun. 2010.
[19] W. Li, Y. Zhao, Y. Deng, and X. He, “Interleaved converter with voltage multiplier cell for high step-up and high efficiency conversion,” IEEE Trans. on Industrial Electronics, Vol. 25, No. 9, pp. 2397-2408, Sep. 2010.
[20] Y. He and F. L. Luo, “Analysis of Luo converters with voltage-lift circuit” IEE Trans. on Power Applications, Vol. 152, No. 5, pp. 1239-1252, Sep. 2005.
[21] M. Zhu and F. L. Luo, “Series SEPIC implementing voltage lift technique for DC-DC power conversion” IET Trans. on Power Electronics, Vol. 1, No. 1, pp. 109-121, 2008.
[22] L. S. Yang, T. J. Liang and J. F. Chen, “Transformerless DC-DC converters with high step-up voltage gain” IEEE Trans. on Industrial Electronics, Vol. 56, No. 8, pp. 3144-3152, Aug. 2009.
[23] A. A. Fardoun and E. H. Ismail, “Ultra step-up DC-DC converters with reduced switch stress” IEEE Trans. on Industrial Applications, Vol. 46, No. 5, pp. 2025-2034, Oct. 2010.
[24] Y. T. Jang and M. M. Jovanovic, “Interleaved boost converter with intrinsic voltage-doubler characteristic for universal-line PFC front end” IEEE Trans. on Power Electronics, Vol. 22, No. 4, pp. 1394-1401, Jul. 2007.
[25] R. Gules, L. L. Pfitscher, and L. C. Franco, “An interleaved boost DC-DC converter with large conversion ratio,” IEEE International Symposium on Industrial Electronics, pp. 411-416, 2003.
[26] S. S. Ang, Power Switching Converters. Marcel Dekker, Inc. 1995.
[27] R. W. Erickson and D. Maksimovics, Fundamentals of Power Electronics. Kluwer Academic Publisher, Inc. 2001.
[28] S. Y. Choe, J. W. Ahn, J. G. Lee, and S. H. Baek, “Dynamic simulator for a PEM fuel cell system with a PWM DC/DC converter,” IEEE Trans. on Energy Conversion, Vol. 23, No. 2, pp. 669-680, Jun. 2008.
[29] X. Yu, M. R. Starke, L. M. Tolbert, and B. Ozpineci, “Fuel cell power conditioning for electric power applications: a summary,” IET-Electric Power Applications, Vol. 1, No. 5, pp.643-656, Sep. 2007
[30] E. Koutroulis, K. Kalaitzakis, and N. C. Voulgaris, “Development of a microcontroller-based, photovoltaic maximum power point tracking control system,” IEEE Trans. on Power Electronics, Vol. 16, No. 1, pp. 46-54, Jan. 2001.
[31] N. Kasa, T. Iida, and L. Chen, “Flyback inverter controlled by sensorless current MPPT for photovoltaic power system,” IEEE Trans. on Industrial Electronics, Vol. 52, No. 4, pp. 1145-1152, Aug. 2005.
[32] G. C. Chryssis, “High-frequency switching power supplies,” McGraw-Hill, Inc. 1989.
[33] Patrick Griffith, “Designing Switching Voltage Regulators with the TL494,” Texas Instruments, Application Report, Feb. 2005.
[34] NXP Semiconductors, “Dual monostable multivibrator,” Datasheet, Nov. 2009
[35] Lazslo Balogh, “Agilent 2.5 Amp output current IGBT gate drive optocoupler,” Agilent Technologies, Application Note, Apr. 2005.