簡易檢索 / 詳目顯示

研究生: 孫紹鈞
Sun, Shao-Chun
論文名稱: 二苯并-18-冠-6-醚與茂金屬銨鹽組成之準輪烷晶體的機械運動
Mechanical Motions of Pseudorotaxanes Crystals Composed of Metallocene Complexes and DB18C6
指導教授: 堀江正樹
Horie, Masaki
口試委員: 游進陽
Yu, Chin-Yang
周鶴修
Chou, Ho-Hsiu
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 176
中文關鍵詞: 茂金屬準輪烷晶體二苯并-18-冠-6-醚
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本篇論文中,我們將製備並分析幾個具有含不同比例的鐵和釕的二茂金屬準輪烷超分子。我們的研究專注於比較不同準輪烷超分子間的機械運動性質,希望能提供一些方法和準則能有助於建造和組裝這類相關的超分子。在這份論文中,我們專注於探討不同茂金屬之間的比例對於超分子在相同環境下,給予相同刺激能對其機械運動造成甚麼影響。由於鐵和釕的電子軌域相同,但是二者所呈現的物理性質卻有很大差異,故以兩者為基底打造出的超分子可能也有不同之處。利用不同溫度下X光單晶繞射,我們可觀察其結構變化來推論其機械運動趨勢,得到茂金屬的比例對超分子運動造成影響。
    第二章將描述具有不同官能基或陰離子之含茂金屬銨鹽的合成方法與性質,並藉由測量核磁共振光譜及質譜來確認該分子,再透過分析其單晶之X射線晶體學,得知其分子結構在不同溫度下變化,並探討分子間作用力對其影響。另外,透過測量吸收光譜以確認含二茂鐵銨鹽的吸收峰值。最後,透過偏振光學顯微鏡檢測熱和光學性質,並描述和比較這些晶體的光誘導機械運動。
    在第三章前半部分當中,主要著重於不同比例茂金屬準輪烷超分子的合成,和先前鑑定方式相同,再透過分析其單晶之X射線晶體學得知其分子結構。由於超分子的排列相較於銨鹽更為整齊,在分析分子間作用力時可以更清楚瞭解各作用力強弱和其排列機制。另外,不同茂金屬比例超分子在不同溫度下的結構也藉由其單晶之X射線晶體學得知。結果顯示較大接觸面積會使其倫敦力強度上升,抑止其運動範圍,減少機械運動。而在第三章後半部分則詳述了輪烷超分子的機械運動,利用前半部的論點,並用其連結先前已發表過的超分子晶體,解釋先前未提及的機械運動驅動力。分析不同超分子間的分子間作用力,可以用先前論點來闡述即便結構類似的輪烷超分子,其運動特性之間也可能會有很大差異。最後提供一個方法來預判其運動方向及範圍。
    第四章將對該研究計畫所得成果進行結論,此外也提出未來可延伸進行之研究主題方向。最後,實驗方法與細節、使用之儀器以及測量結果將總結於附錄中。 


    In this project, ferrocene and ruthenocene-containing pseudorotaxanes were prepared and analyzed. In our previous research, we have studied the dynamic motion of different photoresponsive pseudorotaxanes, providing a strategy for the improvement of efficiency of photoinduced mechanical motion of supramolecules. In this project, we investigated the relationship of dynamic motion by different metallocene moiety in the same environment, since iron and ruthenium have similar electron orbit configuration, but showing different physical characteristic. Single crystal X-ray crystallography of axle molecules and complexes at various temperatures exhibited the details of structure changes, and showed the relationship between the molar ratio of the two metallocenes and the response to external stimuli.
    In Chapter 2, the synthesis, characterization and crystal properties of the metallocene-containing ammonium salts with different proportion of ruthenocene and ferrocene are described. These metallocene-containing ammonium salts were characterized by 1H and 13C NMR spectroscopy and mass spectrometry. The molecular structures and packing patterns were confirmed by single-crystal X-ray crystallography. In addition, UV-Vis spectra were measured to confirm the absorption peaks of ferrocene in the containing ammonium salts. Their thermal and optical properties were examined by polarized optical microscopy. Last, the photoinduced mechanical motions of the crystals are compared and discussed.
    In Chapter 3, the synthesis, characterization and mechanical motion of metallocene pseudorotaxanes are described. These pseudorotaxanes are characterized by 1H NMR and mass spectroscopies. The molecular structures and packing patterns were confirmed by single-crystal X-ray crystallography. The thermal and optical properties were examined by polarized optical microscopy. Moreover, the mechanical motions of the crystal is described, comparing with the metallocene salts. The crystals of pseudorotaxanes showed higher regularity in the packing, allowing analyzing the non-covalent intermolecular interactions much easier than axle molecules. In addition, the molecular structures of the complexes were measured at different temperatures by single-crystal X-ray crystallography. These results allow us to further discuss the mechanism of mechanical motions dynamics and the internal rotation of cyclopentadienyl rings of pseudorotaxanes under different metallocene composition in crystal state. Last, the photoinduced mechanical motions of the crystals are compared. Under 445 nm laser irradiation, ferrocene behaved as a photosensitizer, whereas ruthenocene contributed to separation of molecules, leading to high crystal deformation.
    In Chapter 4, conclusions and future works are described. Experimental details are summarized in Appendix.

    Table of Contents Abstract i 中文摘要 iii Table of Contents v Chapter 1  Introduction and aim 1 1.1  Supramolecular chemistry 1 1.2  Molecular machines 3 1.2.1  Mechanically-interlocked molecules 3 1.2.2  The original molecular machines 4 1.2.3  Molecular machines composed of ruthenium moiety 10 1.3  Molecular motion in solid state 14 1.3.1  Crystalline molecular machine 14 1.3.2  Stimulus-responsive mechanical motion in solid state 17 1.3.3  Photo-responsive mechanical effect in crystal state 23 1.3.4  Photoinduced motion of ferrocene derivatives crystal 26 1.4  Internal rotation of the cyclopentadienyl complexes 30 1.4.1  Internal rotation of ferrocene and ruthenocene 30 1.4.2  Intermolecular interactions of ferrocene and ruthenocene 34 1.4.3  Rotation of ferrocene derivatives 36 1.5 Aim of the work 38 Chapter 2 Synthesis and characterization of metallocene containing ammonium salts 41 2.1 Introduction 41 2.2 Synthesis of metallocene-containing ammonium salts 42 2.3  Characterization of metallocene-containing ammonium salt 44 2.3.1  UV-Vis absorption spectra 44 2.3.2  Single-crystal X-ray crystallography 45 2.4  Thermal properties of metallocene containing ammonium salt crystals 58 2.5  Photoresponsive mechanical motion of crystals of metallocene ammonium salt 60 Chapter 3 Synthesis and characterization of metallocene- and DB18C6-containing pseudorotaxanes 64 3.1 Introduction 64 3.2 Synthesis of metallocene-containing pseudorotaxanes 65 3.3   Characterization of metallocene-containing pseudorotaxanes 66 3.3.1  UV-Vis absorption spectra 66 3.3.2  Single-crystal X-ray crystallography and analysis of molecule interactions of metallocene-containing pseudorotaxanes 68 3.3.3 Different rotation trends observed in similar ferrocene complexes 94 3.3.4 Comparison between metallocene ammonium salt and pseudorotaxane complexes. 98 3.3.5 Construction of the model for describing mechanical motions for individual parts in a nanomachine 100 3.4  Thermal properties of metallocene-containing pseudorotaxanes 104 3.5  Photoresponsive mechanical motion of metallocene pseudorotaxanes 106 Chapter 4 Conclusion and future works 110 4.1 Conclusion 110 4.2 Future Works 116 Appendix 117 Experimental Section 117 A.1 General methods 117 A.2 Experimental method 118 A.2.1 Thermal properties measurement 118 A.2.2 Single crystal X-ray crystallography 118 A.2.3  Photoinduced area change measurement 119 A.3 Preparation of metallocene-containing ammonium salts crystals 120 A.3.1 Synthesis of Ruthenocenecarboxaldehyde 122 A.3.2 Synthesis of (Rc-methyl)+PF6- 123 A.3.3 Synthesis of (Fc-methyl)+PF6- 126 A.3.4 Preparation of (Rc0.6Fc0.4-methyl)+(PF6)- 130 A.4  Preparation of [(Rc-methyl)•DB18C6]+(PF6)- crystal 131 A.4.1 Preparation of [(Rc0.6Fc0.4-methyl)•DB18C6]+(PF6)- 134 A.4.2 Preparation of [(Rc0.3Fc0.7-methyl)•DB18C6]+(PF6)- 134 A.5 X-ray single crystallography 136 A.5.1 (Fc-methyl)+PF6- 136 A.5.2 (Rc-methyl)+PF6- 138 A.5.3 (Rc0.6Fc0.4-methyl)+PF6- 140 A.5.4 [(Rc-methyl)•DB18C6]+(PF6)- 145 A.5.5 [(Rc0.6Fc0.4-methyl)•DB18C6]+(PF6)- 150 A.5.6 [(Rc0.3Fc0.7-methyl)•DB18C6]+(PF6)- 155 A.5.7 [(Fc-methyl)•DB18C6]+(PF6)- 159 A.6 Data measurement of Chapter 2 165 A.6.1 Comparison results of different compositions at 100 K 165 A.6.2 Comparison results of [(Rc0.6Fc0.4-methyl)]+(PF6)- at different temperatures 166 A.7 Data measurement of Chapter 3 167 A.7.1 Comparison results of ferrocene complexes at various temperatures 167 A.7.2 Comparison results of different ruthenocene proportion complexes at various temperatures 169 A.7.3 Comparison results of different intermolecular interactions in same space group at various temperatures 171 A.7.4 Photoinduced relative area change of pseudorotaxanes 172 References 173

    1. J.-M. Lehn, Angewandte Chemie International Edition in English, 1988, 27, 89-112.
    2. J.-M. Lehn, Supramolecular chemistry, Vch, Weinheim, 1995.
    3. M. Burnworth, L. Tang, J. R. Kumpfer, A. J. Duncan, F. L. Beyer, G. L. Fiore, S. J. Rowan and C. Weder, Nature, 2011, 472, 334.
    4. D. J. Cram and J. M. Cram, Science, 1974, 183, 803-809.
    5. D. A. Leigh, J. K. Wong, F. Dehez and F. Zerbetto, Nature, 2003, 424, 174.
    6. B. Gomez-Lor, E. Gutierrez-Puebla, M. Iglesias, M. Monge, C. Ruiz-Valero and N. Snejko, Inorg. Chem., 2002, 41, 2429-2432.
    7. K. L. Wolf and R. Wolff, Angew. Chem. Int. Ed., 1949, 61, 191-201.
    8. O. Kahn, Ascc. Chem. Res., 2000, 33, 647-657.
    9. D. Pijper, M. G. M. Jongejan, A. Meersma and B. L. Feringa, J. Am. Chem. Soc., 2008, 130, 4541-4552.
    10. L. Stricker, E.-C. Fritz, M. Peterlechner, N.L. Doltsinis and B.J. Ravoo, J. Am. Chem. Soc., 2016, 138, 4547-4554.
    11. O. Roling, L. Stricker, J. Voskuhl, S. Lamping and B.J. Ravoo, Chem. Commun., 2016, 52, 1964-1966.
    12. B. Gomez-Lor, E. Gutierrez-Puebla, et al., Inorg. Chem., 2002,41, 2429-2432.
    13. E.V. Anslyn, J. Org. Chem., 2007, 72,687-699.
    14. R. Hagg, Angew. Chem. Int. Ed., 2004, 43, 278-282.
    15. E. Wasserman, J. Am. Chem. Soc., 1960, 82, 4433-4434.
    16. T. J. Hubin and D. H. Busch, Coord. Chem. Rev., 2000, 200-202, 5-52.
    17. C. O. Dietrich-Buchecker, J. P. Sauvage and J. P. Kintzinger, Tetrahedron Letters, 1983, 24, 5095-5098.
    18. M. Cesario, C. O. Dietrich-Buchecker, J. Guilhem, C. Pascard and J. P. Sauvage, Journal of the Chemical Society, Chemical Communications, 1985, DOI: 10.1039/C39850000244, 244-247.
    19. A. Livoreil, C. O. Dietrich-Buchecker and J.-P. Sauvage, Journal of the American Chemical Society, 1994, 116, 9399-9400.
    20. J.-P. Sauvage, Chemical Communications, 2005, DOI: 10.1039/B500680P, 1507-1510.
    21. P. L. Anelli, N. Spencer and J. F. Stoddart, J. Am. Chem. Soc., 1991, 113, 131-5133 
    22. G. Du, E. Moulin, N. Jouault, E. Buhler and N. Giuseppone, Angew. Chem. Int. Ed., 2012, 51, 12504-12508.
    23. Y. Luo, C. P. Collier, J. O. Jeppesen, K. A. Nielsen, E. DeIonno, G. Ho, J. Perkins, H. R. Tseng, T. Yamamoto and J. F. Stoddart, ChemPhysChem, 2002, 3, 519-525.
    24. N. Koumura, R. W. Zijlstra, R. A. van Delden, N. Harada and B. L. Feringa, Nature, 1999, 401, 152.
    25. T. Kudernac, N. Ruangsupapichat, M. Parschau, B. Maciá, N. Katsonis, S. R. Harutyunyan, K.-H. Ernst and B. L. Feringa, Nature, 2011, 479, 208-211.
    26. J. Bauer, L. Hou, J. C. Kistemaker and B. L. Feringa, J. Org. Chem., 2014, 79, 4446-4455.
    27. G. Rapenne and C. Joachim, Nature Reviews Materials, 2017, 2, 17040.
    28. M. A. Garcia-Garibay, Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 10771.
    29. Joachim, C. et al., J. Phys. Condens., 2010, Matter 22, 084025.
    30. Parschau M., Passerone D., et al., Angew. Chem. Int. Ed., 2009, 48, 4065– 4068.
    31. Iancu, V. & Hla, S. W., Proc. Natl Acad. Sci. 2006, 103, 13718–13721.
    32. Pascual J. I., Lorente, N., et al., Nature, 2003, 423, 525–528.
    33. U. G. E. Perera, F. Ample, et al., Nature Nanotechnology, 2013, 8, 46–51.
    34. A. Juris, V. Balzani, et al., Coord.Chem. Rev., 1988, 84, 85–277.
    35. J.G. Vos, J.M. Kelly, Dalton Trans. 2006, 4869–4883.
    36. Benoit Colasson, Alberto Credi, Coordination Chemistry Reviews, 2016, 325, 125-134.
    37. V. Balzani, M. Clemente-Leon, et al., Proc. Natl. Acad. Sci. U. S. A., 2006, 103, 1178–1183.
    38. T.-A. V. Khuong, J. E. Nuñez, C. E. Godinez and M. A. Garcia-Garibay, Acc. Chem. Res., 2006, 39, 413-422.
    39. A. Junk and F. Riess, Am. J. Phys, 2006, 74, 825-830.
    40. A. J. McConnell, C. S. Wood, P. P. Neelakandan and J. R. Nitschke, Chem. Rev., 2015, 115, 7729-7793.
    41. S. Palagi, A. G. Mark, S. Y. Reigh, K. Melde, T. Qiu, H. Zeng, C. Parmeggiani, D. Martella, A. Sanchez-Castillo, N. Kapernaum, F. Giesselmann, D. S. Wiersma, E. Lauga and P. Fischer, Nat. Mater., 2016, 15, 647-653.
    42. J. Lee, S. Oh, J. Pyo, J.-M. Kim and J. H. Je, Nanoscale, 2015, 7, 6457-6461.
    43. J.-a. Lv, W. Wang, J. Xu, T. Ikeda and Y. Yu, Macromol. Rapid Commun., 2014, 35, 1266-1272.
    44. N. Hosono, T. Kajitani, T. Fukushima, K. Ito, S. Sasaki, M. Takata and T. Aida, Science, 2010, 330, 808-811.
    45. F. Cheng, R. Yin, Y. Zhang, C.-C. Yen and Y. Yu, Soft Matter., 2010, 6, 3447-3449.
    46. Y. Yu, M. Nakano and T. Ikeda, Nature, 2003, 425, 145-145.
    47. T. Taniguchi, H. Sugiyama, H. Uekusa, M. Shiro, T. Asahi and H. Koshima, Nat.
    48. C. Yang, W. Wang, C. Yao, R. Xie, X.-J. Ju, Z. Liu and L.-Y. Chu, Sci. Rep., 2015, 5, 13622.
    49. L. Zhang, I. Desta and P. Naumov, Chem. Commun., 2016, 52, 5920-5923.
    50. L. Zhang, S. Chizhik, Y. Wen and P. Naumov, Adv. Funct. Mater., 2016, 26, 1040-1053.
    51. L. Zhang, S. Chizhik, Y. Wen and P. Naumov, Adv. Funct. Mater., 2015, 26, 1040-1053.
    52. C. Ke, Nat. Nanotechnol., 2017, 12, 504.
    53. F. Terao, M. Morimoto and M. Irie, Angew. Chem. Int. Ed., 2012, 124, 925-928.
    54. E. Uchida, R. Azumi and Y. Norikane, Nat. Commun., 2015, 6, 7310.
    55. H. J. Shepherd, I. y. A. Gural’skiy, C. M. Quintero, S. Tricard, L. Salmon, G. Molnár and A. Bousseksou, Nat. Commun., 2013, 4, 2607.
    56. R. Medishetty, A. Husain, Z. Bai, T. Runčevski, R. E. Dinnebier, P. Naumov and J. J. Vittal, Angew. Chem. Int. Ed., 2014, 53, 5907-5911.
    57. R. Medishetty, S. C. Sahoo, C. E. Mulijanto, P. Naumov and J. J. Vittal, Chem. Mater., 2015, 27, 1821-1829.
    58. X. Guo, J. Zhou, M. A. Siegler, A. E. Bragg and H. E. Katz, Angew. Chem. Int. Ed., 2015, 54, 4782-4786.
    59. T. Taniguchi, J. Fujisawa, M. Shiro, H. Koshima and T. Asahi, Chem. Eur. J., 2016, 22, 7950-7958.
    60. O. S. Bushuyev, T. Friscic and C. J. Barrett, CrystEngComm, 2016, 18, 7204-7211.
    61. C. D. Eisenbach, Polymer, 1980, 21, 1175-1179.
    62. F. Agolini and F. P. Gay, Macromolecules, 1970, 3, 349-351.
    63. L. Matějka, M. Ilavský, K. Dušek and O. Wichterle, Polymer, 1981, 22, 1511-1515.
    64. H. Finkelmann, E. Nishikawa, G. G. Pereira and M. Warner, Phys. Rev. Lett., 2001, 87, 015501.
    65. T. Ikeda, M. Nakano, Y. Yu, O. Tsutsumi and A. Kanazawa, Adv. Mater., 2003, 15, 201-205.
    66. Y. Yu, M. Nakano, A. Shishido, T. Shiono and T. Ikeda, Chem. Mater., 2004, 16, 1637-1643.
    67. S. Kobatake, S. Takami, H. Muto, T. Ishikawa and M. Irie, Nature, 2007, 446, 778.
    68. M. Morimoto and M. Irie, J. Am. Chem. Soc., 2010, 132, 14172-14178.
    69. F. Terao, M. Morimoto and M. Irie, Angew. Chem. Int. Ed., 2011, 51, 901-904.
    70. H. Koshima, N. Ojima and H. Uchimoto, J. Am. Chem. Soc., 2009, 131, 6890-6891.
    71. Y. Norikane, S. Tanaka and E. Uchida, CrystEngComm, 2016, 18, 7225-7228.
    72. H. Wang, P. Chen, Z. Wu, J. Zhao, J. Sun and R. Lu, Angew. Chem. Int. Ed., 2017, 56, 9463-9467.
    73. H. Koshima, H. Uchimoto, T. Taniguchi, J. Nakamura, T. Asahi and T. Asahi, CrystEngComm, 2016, 18, 7305-7310.
    74. P. Commins, I. T. Desta, D. P. Karothu, M. K. Panda and P. Naumov, Chem. Commun., 2016, 52, 13941-13954.
    75. George B. Kauffman, J. Chem. Educ., 1983, 60, 185.
    76. K.-J. Chen, Y.-C. Tsai, Y. Suzaki, K. Osakada, A. Miura and M. Horie, Nat. Commun., 2016, 7.
    77. Chi-Hsien Wang, Masaki Horie, Materials Today Chemistry, 2022, 100852.
    78. Geoffrey Wilkinson, J. Am. Chem. Soc., 1952, 74, 6146–6147.
    79. D. Michael P. Mingos, Robert H. Crabtree (2007). Comprehensive Organometallic Chemistry III, Elsevier Science.
    80. Tina Hellmuth, Stefan Rieckhoff, et al., ACS Catal. 2014, 4, 1850–1858.
    81. D. Schaarschmidt and H. Lang, Organometallics, 2013, 32, 5668–5704.
    82. S. O. Scottwell and J. D. Crowley, Chem. Commun., 2016, 52, 2451–2464.
    83. A. E. Kaifer, Acc. Chem. Res., 2014, 47, 2160–2167.
    84. D. Astruc, Eur. J. Inorg. Chem., 2017, 6–29.
    85. Jan C.A. Boeyens, Demetrius C. Levendis, S. Afr. J. Chem.,35(4), 144-151.
    86. Goran A. Bogdanovic, Sladjana B. Novakovic, CrystEngComm, 2011, 13, 6930.
    87. Anna M. Makal, Damian Plazuk, et al., Inorg. Chem., 2010, 49, 4046–4059.
    88. M. von Hopffgarten, G. Frenking, Wiley Interdiscip. Rev.: Comput. Mol. Sci., 2012, 2, 43–62.
    89. E. R. Johnson, S. Keinan, P. Mori-Sanchez, J. ContrerasGarcia, A. J. Cohen and W. T. Yang, J. Am. Chem. Soc., 2010, 132, 6498–6506
    90. Alba Vargas-Caamal, Sudip Pan, et al., Phys. Chem. Chem. Phys., 2016, 18, 550.
    91. Okada, Y., Yamamoto, S., Namba, Y., Masuda, T. and Sakamoto, K., Spectral Analysis Reviews, 2016, 4, 41-48
    92. Kai-Jen Chen, Pei-Lin Chen, Masaki Horie, Sci. Rep. 2017, 7, 14195

    QR CODE