研究生: |
陳威志 Wei-Chih Chen |
---|---|
論文名稱: |
電子束近接效應探討與聚亞醯胺電子束阻劑合成之研究 Study of E-Beam Proximity Effect and Synthesis of Polyimide as E-Beam Resist |
指導教授: |
李育德
Yu-Der Lee 邱燦賓 Tsann-Bim Chiou |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2000 |
畢業學年度: | 88 |
語文別: | 中文 |
論文頁數: | 92 |
中文關鍵詞: | 電子束 、近接效應 、阻劑 、聚亞醯胺 |
外文關鍵詞: | Electron Beam, Proximity Effect, Resist, Polyimide |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
電子束是少數具有製作0.1 mm以下線寬能力的微影技術之一。影響電子束微影解析度最重要因素,就是電子與基材或阻劑碰撞而產生的散射,進而引起近接效應 (Proximity Effect)。電子束近接效應必須加以適當地修正,才有可能獲得更準確的圖案。
在本論文中,採用雙高斯函數表示電子沈積能量分佈的情形,並使用圈餅法與雙線法分別求取函數中之近接效應參數,再將參數代入商業化近接效應修正軟體PROXECOO中,採用劑量修正法修正近接效應,最後以顯微鏡觀測修正前後設計圖形線寬差異。結果發現二種方法對於線寬大於0.4 mm 都有良好之修正效果。
除近接效應外,另一個影響電子束微影優劣的因素就是阻劑。通常電子束阻劑都有熱安定性不佳或是對環境變化過於敏感等缺點,因此我們利用聚亞醯胺 (Polyimide, PI) 的熱安定性,將含有對電子束敏感的SO2基導入分子主鏈中,發展新型電子束阻劑。
將合成之PI (6FDA/BAPS) 與PI (DSDA/HFBAPP) 做一連串基本性質鑑定與微影性質測試,結果證明此二種聚亞醯胺都具有優良電子束阻劑之特性。尤其聚亞醯胺阻劑抗電漿蝕刻能力極佳,且熱烈解溫度高達500 ℃以上,更是一般阻劑難以相較的。
本研究的結果顯示,對於能量沈積分佈函數採雙高斯函數之近接效應修正,不論是採用圈餅法或是雙線法所求得之近接效應參數,對於線寬大於0.4 mm都有良好修正結果。在阻劑的研究上,則發現PI (6FDA/BAPS) 形成負型阻劑,而PI (DSDA/HFBAPP) 則形成正型阻劑,二者皆擁有製作0.1 mm線寬之能力。
Electron beam (e-beam) lithography is one of the most promising candidates for defining fine patterns smaller than 0.1 mm. One of the most serious in e-beam lithography is the proximity effect caused by electron scattering in the resist and the substrate. To obtain good dimension control, the proximity effect has to be suppressed.
In the analytical method, the Double-Gaussian proximity function is normally used to describe the exposure intensity distribution (EID). In this thesis, the doughnut method and the two-rectangle method are used to extract the proximity parameters. The proximity effect parameters that we obtained will be substituted into the commercial software PROXECOO to carry out the preliminary dose correction resulted in good proximity effect correction for 0.4 mm pattern.
Besides, the e-beam resists have been playing a great role in e-beam lithography, but many resists are not stable for temperature. Polyimide (PI) has excellent thermostability, we introduce the e-beam sensitive group (SO2) to the polymer main chain to develop new PI e-beam resists.
PI (6FDA/BAPS) and PI (DSDA/HFBAPP) are verified including structure, viscosity, sensitivity, contrast, thermostabibity, dry etching resistance and other lithography parameters. These properties confirmed they are very good materials as e-beam resists, especially the degraded temperature both are higher than 500 ℃。
In this study, the methods to extract proximity effect parameters are introduced and good 0.4 mm correction results are demonstrated. For the developed new e-beam resists, PI (6FDA/BAPS) is negative type, PI (DSDA/HFBAPP) is positive type and they all have succeeded to form 0.1 mm single line.
參考文獻
1. L. F. Thompson, C. G. Willson, M. J. Bowden, Introduction to Microlithography, ACS, Washington DC. , 1994.
2. E. Samaroo, J. Raamot, P. Parry and G. Robertson, Electron Lett.(8), p. 2077, 1972.
3. E. Weber and R. Moore, Solid State Technol.(22), p. 61, 1979.
4. 龍文安, 積體電路微影製程, 高立圖書有限公司, 1998.
5. M. A. McCord, M. J. Rooks, Handbook of Microlithography, Micromachining and Microfabrication, Volume 1, Chapter 2:Electron Beam Lithography, 1997.
6. 吳玫貞, 電子束微影鄰近效應參數測定與鄰近效應修正之研究, 交通大學應化所碩士論文, 1997.
7. T. H. P. Chang, Proximity Effect in Electron-Beam Lithography, J. Vac. Sci. Technol., B, Vol. 12, No. 6, p. 1271, 1975.
8. S. A. Rishton and D. P. Kern, Point Exposure Distribution Measurements for Proximity Correction in Electron Beam Lithography on a Sub-100 nm Scale, J. Vac. Sci. Technol., B, Vol. 5, No. 1, p. 135, 1987.
9. S. J. Wind et al., Proximity Correction for Electron Beam Lithography Using a Three-Gaussian Model for the Electron Energy Distribution, J. Vac. Sci. Technol., B, Vol. 7, No. 6, p. 1507, 1989.
10. M. Gentill et al., Energy Density function Determination in Very-High-Resolution Electron-Beam Lithography, J. Vac. Sci. Technol., B, Vol. 8, No. 6, p. 1867, 1990.
11. L. Steven et al., Determination of the Proximity Parameters in Electron Beam Lithography Using Doughnut-Structures, Microelectronic Engineering, Vol. 54, p. 141, 1986.
12. E. Boere et al., Experimental Study on Proximity Effects in High Voltage E-Beam Lithography, Microelectronic Engineering, Vol. 11, p. 351, 1990.
13. A. Misaka et al., Determination of Proximity Effect Parameters in Electron-Beam Lithography, J. Appl. Phys., Vol. 68, No. 12, p. 6472, 1990.
14. S. Uchiyama, S. Ohki and T. Matsuda, A New Proximity Parameter Evaluation Method Utilizing Auxiliary Patterns for Dose Compensation, Jpn. J. Appl. Phys., Part 1, Vol. 32, No. 12B, p. 6028, 1993.
15. S. V. Babin, A Techniques for Determination of the Absorbed Energy Density Function in Electron Beam Lithography, Proc. SPIE, Vol.2194, p. 281, 1994.
16. S. Aya et al., Validity of Double and Triple Gaussian Functions for Proximity Effect Correction in X-ray Mask Writing, Jpn. J. Appl. Phys, Part 1, Vol. 35, No. 3, p. 1929, 1996.
17. G. P. Watson et al., Measurement of the Backscattered Coefficient Using Resist Response Curves for 20-100 keV Electron Beam Lithography on Si, J. Vac. Sci. Techonl., B, Vol. 14, No. 6, p. 4277, 1996.
18. W. Lu et al., Improved Proximity Correction Algorithm for Electron-Beam Lithography, Proc. SPIE, Vol. 2194, p. 323, 1994.
19. T. Tamura et al, Improved Proximity Effect Correction Technique Suitable for Cell Projection Electron Beam Direction Writing System, Jpn. J. Appl. Phys., Part 1, Vol. 33, No. 12B, p. 6953, 1994.
20. T. Fujino etal., Application of Proximity Effect Correction Using Pattern-Area Density to Patterning on a Heavy-Metal Substrate and Cell-Projection Exposure, Lpn. J. Appl. Phys., Part 1, Vol. 33, No. 12, B, p. 6946, 1994.
21. T. Nakasugi et al., Accuracy Evaluation of Representative Figure Method for Proximity Effect Correction, Jpn. J. Appl. Phys., Part 1, Vol 34, No. 12B, p. 6644, 1995.
22. T. Waas et al., Proximity Correction for High CD Accuracy and Process Tolerance, Microelectronic Engineering, Vol. 27, p. 179, 1995.
23. T. A. Fretwell et al., A Visualization and Proximity Correction Tool for Submicron E-Beam Lithography, Microelectronic Engineering, Vol. 30, p. 65, 1996.
24. G. Owem et al., Proximity Effect Correction for Electron Beam Lithography by Equalization of Background Dose, J. Appl. Phys., Vol. 54, No. 6, p. 3573, 1983.
25. K. Morizumi et al., Tolerance on Alignment Error in GHOST Proximity Effect Correction, J. Vac. Sci. Technol., B, Vol. 11, No. 6, p. 2114, 1993.
26. M. A. Gesley et al., 100 kV GHOST Electron Beam Proximity Correction on Tungsten X-ray Masks, J. Vac. Sci. Technol., B, Vol. 12, No. 6, p. 3478, 1994.
27. R. Dean, Optimization of Lithography and CD Control Using GHOST Proximity Correction with a MEBES 4500 System, Proc. SPIE, Vol. 2884, p. 302, 1996.
28. K. W. Rhee et al., Proximity Effect Reduction in X-ray Mask Making Using Thin Silicon Dioxide Layers, J. Vac. Sci. Technol., B, Vol. 10, No. 6, p. 3062, 1992.
29. E. A. Dobisz et al., Thin Silicon Nitride Films for Reduction of Linewidth and Proximity Effect in Electron-Beam Lithography, J. Vac. Sci. Technol., B, Vol. 10, No. 6, p. 3067, 1992.
30. E. A. Dobisz et al., Reduction and Elimination of Proximity Effects, J. Vac. Sci. Technol., B, Vol. 11, No. 6, p. 2733, 1993.
31. N. Samoto et al., A Novel Electron-Beam Exposure Technique for 0.1-μm T-Shaped Gate Fabrication, J. Vac. Sci. Technol., B, Vol. 8, No. 6, p. 1335, 1990.
32. T. G. Vachette et al., Proximity E-Beam Exposure in Submicron Patterns Using a Silylation Process, Microelectronic Engineering, Vol. 13, p. 205, 1991.
33. M. M. Ahmed et al., Novel Electron Beam Lithography Technique for Submicron T-Gate Fabrication, J. Vac. Sci. Technol., B, Vol. 15, No. 2, p. 306, 1997.
34. G. H. Bernstein, D. A. Hill, Superlattices and Microstructures 11(2), 237, 1992.
35. B. P. Van der Gaag, A. Sherer, Appl. Phys. Lett. 56, 481, 1990.
36. C. G. Willson, Organic resist materials, in Introduction to Microlithography, America Chemical Society, Washington, 1994.
37. A. Reiser, Electron Beam Lithography, in Photoreactive Polymer, Wiley, 1989.
38. W. Moreau, D. Merritt, W. Mayer, M. Hatzakis, D. Johnson, and L. Pederson, J. Vac. Sci. Technol. 16, 1989, 1979.
39. R. G. Jones, R. H. Gragg, R. D. P. Davies and D. R. Brambley, J. Mater. Chem. 2(4), 371, 1992.
40. T.Ishii, H. Nozawa and T. Tamamura, Microelect. Eng. 35, 113, 1997.
41. M. D. R. Thomas, D. G. Hasko, H. Ahmed, D. B. Brown and B. F. G. Johnson, Microelect. Eng. 41, 327, 1998.
42. R. G. Jones, R. D. P. Davies and D. R. Brambley, J. Mater. Chem. 3(1), 15, 1993.
43. J. V. Crivello and S. Y. Shim, Chem. Mater. 8, 376-381, 1996.
44. A. Tritchkov, R. Jonckheere, and L. Van den hove, J. Vac. Sci. Technol. B, 13(6), 2986-2993, 1995.
45. V. A. Kudryashov, P. D. Prewett and A. G. Michette, Microelect. Eng. 41, 203-206, 1998.
46. A. Aviram, M. Angelopoulos, E. Babich, I. Babich, K. Petrillo, and D. Seeger, SPIE 3331, 349-357, 1998.
47. K. L. Mittal, Polyimides, New York: Plenum Press, 1984.
48. T. Yamashita et al., Photocrosslinking Reaction of Benzophenone Type Polyimide and Its Derivatives, Polymers for Microelectronics-Science and Technology, Tokyo: Kodansha, p. 837, 1990.
49. T. Sasuga, Tainetusei Kobunshi (Thermostable Polymers), Tokyo: Sangyo Gitjutu Shuppan, p. 129, 1987.
50. T. Yamashita et al., Polym. Degrad. Stab., Vol. 39, p. 47, 1991.
51. J. C. Chien et al., J. Polym. Sci. Polym. Chem., Vol. 27, p. 3343, 1989.
52. J. C. Chien et al., Polym. Eng. Sci., Vol. 29, p. 937, 1989.
53. J. C. Chien et al., J. Polym. Sci. Polym. Chem., Vol. 27, p. 915, 1989.
54. J. Krishnaswamy et al., J. Mater. Res., Vol. 3, p. 1259, 1989.
55. J. Pfeifer et al., Proc. Of 2nd Int'l. Conf. on Polyimides, p. 130, 1985.