簡易檢索 / 詳目顯示

研究生: 陳威志
Wei-Chih Chen
論文名稱: 電子束近接效應探討與聚亞醯胺電子束阻劑合成之研究
Study of E-Beam Proximity Effect and Synthesis of Polyimide as E-Beam Resist
指導教授: 李育德
Yu-Der Lee
邱燦賓
Tsann-Bim Chiou
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2000
畢業學年度: 88
語文別: 中文
論文頁數: 92
中文關鍵詞: 電子束近接效應阻劑聚亞醯胺
外文關鍵詞: Electron Beam, Proximity Effect, Resist, Polyimide
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 電子束是少數具有製作0.1 mm以下線寬能力的微影技術之一。影響電子束微影解析度最重要因素,就是電子與基材或阻劑碰撞而產生的散射,進而引起近接效應 (Proximity Effect)。電子束近接效應必須加以適當地修正,才有可能獲得更準確的圖案。
    在本論文中,採用雙高斯函數表示電子沈積能量分佈的情形,並使用圈餅法與雙線法分別求取函數中之近接效應參數,再將參數代入商業化近接效應修正軟體PROXECOO中,採用劑量修正法修正近接效應,最後以顯微鏡觀測修正前後設計圖形線寬差異。結果發現二種方法對於線寬大於0.4 mm 都有良好之修正效果。

    除近接效應外,另一個影響電子束微影優劣的因素就是阻劑。通常電子束阻劑都有熱安定性不佳或是對環境變化過於敏感等缺點,因此我們利用聚亞醯胺 (Polyimide, PI) 的熱安定性,將含有對電子束敏感的SO2基導入分子主鏈中,發展新型電子束阻劑。

    將合成之PI (6FDA/BAPS) 與PI (DSDA/HFBAPP) 做一連串基本性質鑑定與微影性質測試,結果證明此二種聚亞醯胺都具有優良電子束阻劑之特性。尤其聚亞醯胺阻劑抗電漿蝕刻能力極佳,且熱烈解溫度高達500 ℃以上,更是一般阻劑難以相較的。

    本研究的結果顯示,對於能量沈積分佈函數採雙高斯函數之近接效應修正,不論是採用圈餅法或是雙線法所求得之近接效應參數,對於線寬大於0.4 mm都有良好修正結果。在阻劑的研究上,則發現PI (6FDA/BAPS) 形成負型阻劑,而PI (DSDA/HFBAPP) 則形成正型阻劑,二者皆擁有製作0.1 mm線寬之能力。


    Electron beam (e-beam) lithography is one of the most promising candidates for defining fine patterns smaller than 0.1 mm. One of the most serious in e-beam lithography is the proximity effect caused by electron scattering in the resist and the substrate. To obtain good dimension control, the proximity effect has to be suppressed.
    In the analytical method, the Double-Gaussian proximity function is normally used to describe the exposure intensity distribution (EID). In this thesis, the doughnut method and the two-rectangle method are used to extract the proximity parameters. The proximity effect parameters that we obtained will be substituted into the commercial software PROXECOO to carry out the preliminary dose correction resulted in good proximity effect correction for 0.4 mm pattern.

    Besides, the e-beam resists have been playing a great role in e-beam lithography, but many resists are not stable for temperature. Polyimide (PI) has excellent thermostability, we introduce the e-beam sensitive group (SO2) to the polymer main chain to develop new PI e-beam resists.

    PI (6FDA/BAPS) and PI (DSDA/HFBAPP) are verified including structure, viscosity, sensitivity, contrast, thermostabibity, dry etching resistance and other lithography parameters. These properties confirmed they are very good materials as e-beam resists, especially the degraded temperature both are higher than 500 ℃。

    In this study, the methods to extract proximity effect parameters are introduced and good 0.4 mm correction results are demonstrated. For the developed new e-beam resists, PI (6FDA/BAPS) is negative type, PI (DSDA/HFBAPP) is positive type and they all have succeeded to form 0.1 mm single line.

    總目錄 摘要Ⅰ AbstractⅡ 謝誌Ⅲ 總目錄Ⅳ 圖目錄IX 表目錄XII 第一章 緒論1 第二章 理論與文獻回顧4 2-1 電子束微影簡介4 2-1-1 電子源5 2-1-2 電子束照射方式6 2-1-3 電子束照射形狀7 2-1-4 基板平台運動方式8 2-2 電子束近接效應成因9 2-2-1 前向散射電子9 2-2-2 背向散射電子9 2-2-3 二次電子9 2-3 電子束近接效應之模型與參數11 2-3-1 蒙地卡羅模擬11 2-3-2 分析模型12 2-3-3 近似分析函數13 2-4 電子束近接效應參數分析與實驗方法17 2-4-1 圈餅法17 2-4-2 圓形法18 2-4-3 網目法18 2-4-4 輔助圖案法19 2-4-5 線形法19 2-4-6 線隙法20 2-4-7 方形法20 2-5 電子束近接效應修正21 2-5-1 圖案劑量法21 2-5-2 全面水平探測技術24 2-5-3 中間層減少快二次電子法26 2-5-4 多層阻劑法27 2-6 商業化電子束阻劑29 2-7 聚亞醯胺電子束阻劑33 第三章 研究動機與目的37 第四章 實驗方法38 4-1 實驗流程38 4-2 藥品與溶劑39 4-3 儀器設備40 4-4 電子束阻劑微影製程研究42 4-4-1 阻劑塗佈42 4-4-2 電子束照射42 4-4-3 顯影42 4-4-4 觀測方式43 4-4-5 抗蝕刻性質測試43 4-5 電子束近接效應研究44 4-5-1 臨界劑量44 4-5-2 電子束近接效應參數量測45 4-5-3 電子束近接效應修正48 4-6 可溶性聚亞醯胺電子束阻劑合成49 4-6-1 聚亞醯胺PI (6FDA/BAPS) 合成49 4-6-2 聚亞醯胺PI (DSDA/HFBAPP) 合成50 4-7 基本性質測試51 第五章 結果與討論52 5-1 求取電子束近接效應參數52 5-1-1 圈餅法52 5-1-2 雙線法54 5-1-3 測試圖形設計56 5-2 電子束近接效應修正57 5-2-1 近接效應修正成果57 5-2-2 誤差產生原因61 5-3 聚亞醯胺阻劑基本性質鑑定62 5-3-1 IR與NMR62 5-3-2熱性質分析65 5-3-3固有黏度量測66 5-3-4溶解度測試67 5-4 電子束阻劑微影性質分析68 5-4-1 阻劑塗佈厚度與均勻性68 5-4-2 電子束阻劑微影製程參數71 5-4-3 阻劑之感光度與對比對74 5-4-4 聚亞醯胺電子束阻劑反應機制77 5-4-5 抗蝕刻性質測試80 5-4-6 阻劑製作0.1 mm圖案82 第六章 結論84 6-1 電子束近接效應探討84 6-2 聚亞醯胺電子束阻劑合成研究85 6-3 未來研究方向87 參考文獻88 圖 目 錄 圖一 電子束微影機台簡圖5 圖二 電子束照射方式6 圖三 電子束形狀與基板平台移動方式8 圖四 電子束電壓與前向、背向散射電子分佈示意圖10 圖五 全面水平探測技術修正電子束近接效應示意圖24 圖六 Terpolymer結構圖30 圖七 PMMA阻劑主要結構圖31 圖八 PBS阻劑主要結構圖31 圖九 ZEB-520阻劑主要結構圖32 圖十 SAL-601阻劑主要結構圖32 圖十一 芳香基團對電子束安定程度的比較34 圖十二 各種聚亞醯胺與聚醯胺酸電子束阻劑35 圖十三 PI (BTDA/DEDPM) 經電子束照射後的反應機制36 圖十四 實驗流程圖38 圖十五 (a)圈餅法(b)雙線法 圖案設計示意圖45 圖十六 PI (6FDA/BAPS) 合成流程圖49 圖十七 PI (DSDA/HFBAPP) 合成流程圖50 圖十八 光學顯微鏡拍攝之圈餅實驗影像52 圖十九 圈餅法之近似非線性曲線湊配結果53 圖二十 圈餅法之非線性曲線湊配結果53 圖二十一 光學顯微鏡拍攝之雙線實驗影像54 圖二十二 雙線法之近似非線性曲線湊配結果55 圖二十三 雙線法之非線性曲線湊配結果55 圖二十四 測試圖形設計圖56 圖二十五 修正前觀測之測試圖案59 圖二十六 以圈餅法修正參數修正後觀測之測試圖案59 圖二十七 以雙線法修正參數修正後觀測之測試圖案59 圖二十八 修正前密集線圖案差異0.042 mm60 圖二十九 以圈餅法修正參數修正後密集線圖案差異0.014 mm60 圖三十 以雙線法修正參數修正後密集線圖案差異0.014 mm60 圖三十一 圈餅法觀測誤差示意圖61 圖三十二 PI (6FDA/BAPS) 之IR光譜63 圖三十三 PI (DSDA/HFBAPP) 之IR光譜63 圖三十四 PI (6FDA/BAPS) 之1H NMR光譜64 圖三十五 PI (DSDA/HFBAPP) 之1H NMR光譜64 圖三十六 PI (6FDA/BAPS) 之TGA圖65 圖三十七 PI (DSDA/HFBAPP) 之TGA圖65 圖三十八 測量晶片9點位置示意圖69 圖三十九 商業化電子束阻劑NEB-22之特性曲線74 圖四十 電子束阻劑 PI (6FDA/BAPS) 之特性曲線75 圖四十一 電子束阻劑 PI (DSDA/HFBAPP) 之特性曲線75 圖四十二 含SO2電子束阻劑可能反應機制77 圖四十三 PI (6FDA/BAPS) 負型阻劑可能反應機制78 圖四十四 PI (DSDA/HFBAPP) 正型阻劑可能反應機制79 圖四十五 NEB-22製作之0.101 mm圖案82 圖四十六 PI (6FDA/BAPS) 製作之0.101 mm圖案83 圖四十七 PI (DSDA/HFBAPP) 製作之0.101 mm圖案83 表 目 錄 表一 乾式蝕刻機台條件43 表二 圈餅法與雙線法獲得之近接效應參數比較57 表三 聚亞醯胺阻劑固有黏度值比較66 表四 聚亞醯胺阻劑溶解性測試67 表五 量測各種阻劑薄膜在相異9點之厚度值70 表六 顯影時間80秒下PI (6FDA/BAPS) 線寬誤差百分比72 表七 顯影液DMF:IP=1:1下PI (6FDA/BAPS) 線寬誤差百分比72 表八 顯影時間80秒下PI (DSDA/HFBAPP) 線寬誤差百分比73 表九 顯影液DMF:IP=2:3下PI(DSDA/HFBAPP)線寬誤差百分比73 表十 三種阻劑之感光度與對比度76 表十一 各阻劑之抗蝕刻速率結果比較 (Si3N4)81 表十二 各阻劑之抗蝕刻速率結果比較 (SiO2)81 表十三 各阻劑之抗蝕刻速率結果比較 (Poly-Si)81

    參考文獻
    1. L. F. Thompson, C. G. Willson, M. J. Bowden, Introduction to Microlithography, ACS, Washington DC. , 1994.
    2. E. Samaroo, J. Raamot, P. Parry and G. Robertson, Electron Lett.(8), p. 2077, 1972.
    3. E. Weber and R. Moore, Solid State Technol.(22), p. 61, 1979.
    4. 龍文安, 積體電路微影製程, 高立圖書有限公司, 1998.
    5. M. A. McCord, M. J. Rooks, Handbook of Microlithography, Micromachining and Microfabrication, Volume 1, Chapter 2:Electron Beam Lithography, 1997.
    6. 吳玫貞, 電子束微影鄰近效應參數測定與鄰近效應修正之研究, 交通大學應化所碩士論文, 1997.
    7. T. H. P. Chang, Proximity Effect in Electron-Beam Lithography, J. Vac. Sci. Technol., B, Vol. 12, No. 6, p. 1271, 1975.
    8. S. A. Rishton and D. P. Kern, Point Exposure Distribution Measurements for Proximity Correction in Electron Beam Lithography on a Sub-100 nm Scale, J. Vac. Sci. Technol., B, Vol. 5, No. 1, p. 135, 1987.
    9. S. J. Wind et al., Proximity Correction for Electron Beam Lithography Using a Three-Gaussian Model for the Electron Energy Distribution, J. Vac. Sci. Technol., B, Vol. 7, No. 6, p. 1507, 1989.
    10. M. Gentill et al., Energy Density function Determination in Very-High-Resolution Electron-Beam Lithography, J. Vac. Sci. Technol., B, Vol. 8, No. 6, p. 1867, 1990.
    11. L. Steven et al., Determination of the Proximity Parameters in Electron Beam Lithography Using Doughnut-Structures, Microelectronic Engineering, Vol. 54, p. 141, 1986.
    12. E. Boere et al., Experimental Study on Proximity Effects in High Voltage E-Beam Lithography, Microelectronic Engineering, Vol. 11, p. 351, 1990.
    13. A. Misaka et al., Determination of Proximity Effect Parameters in Electron-Beam Lithography, J. Appl. Phys., Vol. 68, No. 12, p. 6472, 1990.
    14. S. Uchiyama, S. Ohki and T. Matsuda, A New Proximity Parameter Evaluation Method Utilizing Auxiliary Patterns for Dose Compensation, Jpn. J. Appl. Phys., Part 1, Vol. 32, No. 12B, p. 6028, 1993.
    15. S. V. Babin, A Techniques for Determination of the Absorbed Energy Density Function in Electron Beam Lithography, Proc. SPIE, Vol.2194, p. 281, 1994.
    16. S. Aya et al., Validity of Double and Triple Gaussian Functions for Proximity Effect Correction in X-ray Mask Writing, Jpn. J. Appl. Phys, Part 1, Vol. 35, No. 3, p. 1929, 1996.
    17. G. P. Watson et al., Measurement of the Backscattered Coefficient Using Resist Response Curves for 20-100 keV Electron Beam Lithography on Si, J. Vac. Sci. Techonl., B, Vol. 14, No. 6, p. 4277, 1996.
    18. W. Lu et al., Improved Proximity Correction Algorithm for Electron-Beam Lithography, Proc. SPIE, Vol. 2194, p. 323, 1994.
    19. T. Tamura et al, Improved Proximity Effect Correction Technique Suitable for Cell Projection Electron Beam Direction Writing System, Jpn. J. Appl. Phys., Part 1, Vol. 33, No. 12B, p. 6953, 1994.
    20. T. Fujino etal., Application of Proximity Effect Correction Using Pattern-Area Density to Patterning on a Heavy-Metal Substrate and Cell-Projection Exposure, Lpn. J. Appl. Phys., Part 1, Vol. 33, No. 12, B, p. 6946, 1994.
    21. T. Nakasugi et al., Accuracy Evaluation of Representative Figure Method for Proximity Effect Correction, Jpn. J. Appl. Phys., Part 1, Vol 34, No. 12B, p. 6644, 1995.
    22. T. Waas et al., Proximity Correction for High CD Accuracy and Process Tolerance, Microelectronic Engineering, Vol. 27, p. 179, 1995.
    23. T. A. Fretwell et al., A Visualization and Proximity Correction Tool for Submicron E-Beam Lithography, Microelectronic Engineering, Vol. 30, p. 65, 1996.
    24. G. Owem et al., Proximity Effect Correction for Electron Beam Lithography by Equalization of Background Dose, J. Appl. Phys., Vol. 54, No. 6, p. 3573, 1983.
    25. K. Morizumi et al., Tolerance on Alignment Error in GHOST Proximity Effect Correction, J. Vac. Sci. Technol., B, Vol. 11, No. 6, p. 2114, 1993.
    26. M. A. Gesley et al., 100 kV GHOST Electron Beam Proximity Correction on Tungsten X-ray Masks, J. Vac. Sci. Technol., B, Vol. 12, No. 6, p. 3478, 1994.
    27. R. Dean, Optimization of Lithography and CD Control Using GHOST Proximity Correction with a MEBES 4500 System, Proc. SPIE, Vol. 2884, p. 302, 1996.
    28. K. W. Rhee et al., Proximity Effect Reduction in X-ray Mask Making Using Thin Silicon Dioxide Layers, J. Vac. Sci. Technol., B, Vol. 10, No. 6, p. 3062, 1992.
    29. E. A. Dobisz et al., Thin Silicon Nitride Films for Reduction of Linewidth and Proximity Effect in Electron-Beam Lithography, J. Vac. Sci. Technol., B, Vol. 10, No. 6, p. 3067, 1992.
    30. E. A. Dobisz et al., Reduction and Elimination of Proximity Effects, J. Vac. Sci. Technol., B, Vol. 11, No. 6, p. 2733, 1993.
    31. N. Samoto et al., A Novel Electron-Beam Exposure Technique for 0.1-μm T-Shaped Gate Fabrication, J. Vac. Sci. Technol., B, Vol. 8, No. 6, p. 1335, 1990.
    32. T. G. Vachette et al., Proximity E-Beam Exposure in Submicron Patterns Using a Silylation Process, Microelectronic Engineering, Vol. 13, p. 205, 1991.
    33. M. M. Ahmed et al., Novel Electron Beam Lithography Technique for Submicron T-Gate Fabrication, J. Vac. Sci. Technol., B, Vol. 15, No. 2, p. 306, 1997.
    34. G. H. Bernstein, D. A. Hill, Superlattices and Microstructures 11(2), 237, 1992.
    35. B. P. Van der Gaag, A. Sherer, Appl. Phys. Lett. 56, 481, 1990.
    36. C. G. Willson, Organic resist materials, in Introduction to Microlithography, America Chemical Society, Washington, 1994.
    37. A. Reiser, Electron Beam Lithography, in Photoreactive Polymer, Wiley, 1989.
    38. W. Moreau, D. Merritt, W. Mayer, M. Hatzakis, D. Johnson, and L. Pederson, J. Vac. Sci. Technol. 16, 1989, 1979.
    39. R. G. Jones, R. H. Gragg, R. D. P. Davies and D. R. Brambley, J. Mater. Chem. 2(4), 371, 1992.
    40. T.Ishii, H. Nozawa and T. Tamamura, Microelect. Eng. 35, 113, 1997.
    41. M. D. R. Thomas, D. G. Hasko, H. Ahmed, D. B. Brown and B. F. G. Johnson, Microelect. Eng. 41, 327, 1998.
    42. R. G. Jones, R. D. P. Davies and D. R. Brambley, J. Mater. Chem. 3(1), 15, 1993.
    43. J. V. Crivello and S. Y. Shim, Chem. Mater. 8, 376-381, 1996.
    44. A. Tritchkov, R. Jonckheere, and L. Van den hove, J. Vac. Sci. Technol. B, 13(6), 2986-2993, 1995.
    45. V. A. Kudryashov, P. D. Prewett and A. G. Michette, Microelect. Eng. 41, 203-206, 1998.
    46. A. Aviram, M. Angelopoulos, E. Babich, I. Babich, K. Petrillo, and D. Seeger, SPIE 3331, 349-357, 1998.
    47. K. L. Mittal, Polyimides, New York: Plenum Press, 1984.
    48. T. Yamashita et al., Photocrosslinking Reaction of Benzophenone Type Polyimide and Its Derivatives, Polymers for Microelectronics-Science and Technology, Tokyo: Kodansha, p. 837, 1990.
    49. T. Sasuga, Tainetusei Kobunshi (Thermostable Polymers), Tokyo: Sangyo Gitjutu Shuppan, p. 129, 1987.
    50. T. Yamashita et al., Polym. Degrad. Stab., Vol. 39, p. 47, 1991.
    51. J. C. Chien et al., J. Polym. Sci. Polym. Chem., Vol. 27, p. 3343, 1989.
    52. J. C. Chien et al., Polym. Eng. Sci., Vol. 29, p. 937, 1989.
    53. J. C. Chien et al., J. Polym. Sci. Polym. Chem., Vol. 27, p. 915, 1989.
    54. J. Krishnaswamy et al., J. Mater. Res., Vol. 3, p. 1259, 1989.
    55. J. Pfeifer et al., Proc. Of 2nd Int'l. Conf. on Polyimides, p. 130, 1985.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE