簡易檢索 / 詳目顯示

研究生: 謝宇鈞
Hsieh, Yu-Chun
論文名稱: CRISPR/Cas9藉由基因體和表觀基因組的編輯精準地調節癌症幹細胞相關基因表達
CRISPR/Cas9-mediated genome and epigenome editing for precision modulation of cancer stem cell-related gene expression
指導教授: 李佳霖
Lee, Jia-Lin
口試委員: 張壯榮
CHANG, CHUANG-RUNG
王翊青
WANG, I-CHING
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 分子與細胞生物研究所
Institute of Molecular and Cellular Biology
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 57
中文關鍵詞: 癌症幹細胞肺癌基因敲除基因活化
外文關鍵詞: ELAVL1, HuR, dCas9, CancerStemCell, Knockout, VPR, SunTag, p300, VP64
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Clustered regularly interspaced short palindromic repeats(CRISPR)/CRISPR-associated(Cas)protein 9(CRISPR/Cas9)的系統為基因敲除、敲入、活化、抑制和標記提供了精確的工具。在本次研究中,我們成功地使用CRISPR/Cas9敲除LM和HM20肺癌細胞中的癌症幹細胞相關基因ELAVL1(LM-ELAVL1-KO and HM20-ELAVL1-KO)。此外,為了進行有針對性的表觀遺傳修飾,我們使用dCas9 — 將Cas9核酸內切酶結構域突變,以產生核酸內切酶的功能喪失。dCas9與改變轉錄的蛋白質結構域融合,例如轉錄激活因子和組蛋白修飾因子。我們做出多個CRISPR-activated-ELAVL1的HM20克隆,像是HM20-dCas9VP64、HM20-dCas9VPR、HM20-dCas9p300 和HM20-dCas9SunTag。HuR(ELAVL1)是一種RNA的結合蛋白,和mRNA的穩定性和轉譯效率有關,也是調節細胞增生,生長和存活途徑的必要組成。我們發現ELAVL1敲除細胞(LM-ELAVL1-KO和HM20-ELAVL1-KO)的細胞遷移能力和增殖率顯著降低,而CRISPR / Cas9介導的表觀基因組編輯在ELAVL1激活細胞中這些功能有增加。有趣的是,細胞週期相關蛋白(如細胞週期蛋白B1)的表達在ELAVL1敲除細胞中減少,相反,這些基因在ELAVL1激活細胞中增加。我們可以通過CRISPR/Cas9介導的基因組和表觀基因組編輯來研究癌症幹細胞相關基因的功能。我們的結果可能為CRISPR/Cas9靶向癌症幹細胞相關基因的應用提供證據,作為一種新的治療策略,用於人類癌症治療。


    Clustered regularly interspaced short palindromic repeats(CRISPR)/CRISPR-associated(Cas)protein 9 system provides a precision tool for gene knockin, knockout, activation, suppression and labeling. In this study, we successfully used CRISPR/Cas9 to knockout a cancer stem cell- related genes, ELAVL1, in LM and HM20 lung cancer cells(LM-ELAVL1-KO and HM20-ELAVL1- KO). In addition, to make targeted epigenetic remodeling, researchers have mutated the nuclease domains of Cas9 to create a nuclease deficient(dCas9). dCas9 is fused to a protein domain that alters transcription, such as a transcriptional activator and histone modifier. We generated several CRISPR-activated-ELAVL1 HM20 clones, including HM20-dCas9VP64, HM20-dCas9VPR, HM20-dCas9p300 and HM20-dCas9SunTag. HuR(ELAVL1)is a RNA-binding protein which modulates the stability and translational efficiency of mRNA encoding essential components of cellular proliferation, growth and survival pathways. We found that the cell migration ability and proliferation rate were significantly reduced in ELAVL1-knockout cells(LM-ELAVL1-KO and HM20-ELAVL1-KO), whereas those functions were increased in ELAVL1-activation cells by CRISPR/Cas9-mediated epigenome editing. Interestingly, the expression of cell cycle-related proteins, such as cyclin B1, were reduced in ELAVL1-knockout cells, on the contrary, those genes were increased in ELAVL1-activation cells. We can investigate the functions of cancer stem cell- related genes by CRISPR/Cas9-mediated genome and epigenome editing. Our results may provide evidence for application of CRISPR/Cas9 targeting cancer stem cell-related genes, as a new treatment strategy, in human cancer therapy.

    Abstract 1 摘要 2 Abbreviation Index 3 Content 4 Figure legends 7 Chapter 1. Introduction 8 1.1 淺談CRISPR / Cas 8 1.2 CRISPR / Cas9 的組成與其功能 8 1.3 CRISPR / Cas9 的應用 9 1.4 Cas9 vs. dCas9 9 1.5 CRISPRa — CRISPR activation 10 1.6 ELAVL1 gene / HuR protein 的功能與介紹 10 1.7 HuR和癌症的關係 10 1.8 CD133 - Cancer Stem Cell Marker 11 1.9 EMT : Epithelial to Mesenchymal Transition 11 1.10 預期目標 11 Chapter 2. Material and Method 12 2.1 細胞培養與繼代(Cell culture and passage) 12 2.2 細胞冷凍與解凍(Cell cryopreservation and thawing) 12 2.2.1 細胞冷凍 12 2.2.2 細胞解凍 12 2.3 質體萃取(Plasmid extraction) 12 2.4 細胞轉染(Cell transfecting) 13 2.5 CRISPR/Cas9的細胞株挑選 13 2.5.1 質體轉染(Plasmid Transfection) 13 2.5.2 抗生素篩選(Antibiotic selection) 14 2.5.3 序列稀釋(Limiting dilution) 14 2.6 西方墨點法(Western Blot ) 14 2.6.1 Total cell lysis 14 2.6.2 SDS-PAGE電泳 15 2.6.3 轉膜(Transfer ) 15 2.6.4 免疫雜交法 15 2.6.5 抗體比例 15 2.7 細胞免疫螢光染色(Immunocytochemistry) 16 2.8 T7E1 assay 16 2.8.1 Genomic DNA 抽取 16 2.8.2 PCR 純化 17 2.8.3 Heteroduplexes形成 17 2.8.4 Heteroduplexes切割 18 2.9 RT-PCR(Reverse Transcription-PCR) 18 2.9.1 抽取Total RNA 18 2.9.2 酒精沈澱 18 2.9.3 反轉錄(Reverse Transcription) 19 2.10 細胞生長檢測(Cell proliferation assays) 19 2.11 數據的量化與統計分析 19 2.12 溶液成份表 20 Chapter 3. Results 22 3.1 尋找最適合的sgRNA 22 3.2 測試Puromycin的濃度 22 3.3 製備CRISPR/Cas9細胞株的優化步驟 22 3.4 選用四種不同的CRISPRa系統作為比較 23 3.5 CRISPR/Cas9所介導的基因剔除 23 3.5.1 細胞株選擇 23 3.5.2 T7E1的檢測 24 3.5.3 細胞免疫螢光染色和西方墨點法的檢測 24 3.6 ELAVL1 gene的表現與細胞增生的關係 24 3.7 dCas9-Activator對於增強ELAVL1 gene的能力 24 3.7.1 dCas9-VP64對於增強ELAVL1 gene的能力 24 3.7.2 dCas9-VPR對於增強ELAVL1 gene的能力 25 3.7.3 dCas9-p300對於增強ELAVL1 gene的能力 25 3.7.4 dCas9-SunTag對於增強ELAVL1 gene的能力 25 3.8 不同ELAVL1的表現量對於Cyclin B1的關係 25 3.9 不同ELAVL1的表現量對於CD133的關係 26 3.10 不同ELAVL1的表現量對於N-Cadherin的關係 26 Chapter 4. Discussion 27 4.1 挑選CRISPR/Cas9介導剔除ELAVL1 gene的細胞株 27 4.2 四種不同dCas9-Activator提升ELAVL1 gene的能力 27 4.3 剔除ELAVL1影響細胞生長 28 4.4 下調ELAVL1表現量增加Cancer Stem Cell Marker 28 4.5 降低ELAVL1表現量促進EMT的發生 28 Chapter 5. Conclusion and Implications 29 References 30

    Adamson, B., Norman, T.M., Jost, M., Cho, M.Y., Nuñez, J.K., Chen, Y., Villalta, J.E., Gilbert, L.A., Horlbeck, M.A., Hein, M.Y., et al. (2016). A Multiplexed Single-Cell CRISPR Screening Platform Enables Systematic Dissection of the Unfolded Protein Response. Cell 167, 1867-1882.e1821.
    Barrangou, R., and Doudna, J.A. (2016). Applications of CRISPR technologies in research and beyond. Nat Biotechnol 34, 933-941.
    Barrangou, R., Fremaux, C., Deveau, H., Richards, M., Boyaval, P., Moineau, S., Romero, D.A., and Horvath, P. (2007). CRISPR Provides Acquired Resistance Against Viruses in Prokaryotes. Science 315, 1709-1712.
    Bauer, D.E., Canver, M.C., and Orkin, S.H. (2014). Generation of Genomic Deletions in Mammalian Cell Lines via CRISPR/Cas9. Journal of Visualized Experiments.
    Bhaya, D., Davison, M., and Barrangou, R. (2011). CRISPR-Cas Systems in Bacteria and Archaea: Versatile Small RNAs for Adaptive Defense and Regulation. Annual Review of Genetics 45, 273-297.
    Brouns, S.J.J., Jore, M.M., Lundgren, M., Westra, E.R., Slijkhuis, R.J.H., Snijders, A.P.L., Dickman, M.J., Makarova, K.S., Koonin, E.V., and van der Oost, J. (2008). Small CRISPR RNAs Guide Antiviral Defense in Prokaryotes. Science 321, 960-964.
    Burgess, D.J. (2013). A CRISPR genome-editing tool. Nature Reviews Genetics 14, 81-81.
    Chavez, A., Scheiman, J., Vora, S., Pruitt, B.W., Tuttle, M., E, P.R.I., Lin, S., Kiani, S., Guzman, C.D., Wiegand, D.J., et al. (2015). Highly efficient Cas9-mediated transcriptional programming. Nat Methods 12, 326-328.
    Cho, S.W., Kim, S., Kim, J.M., and Kim, J.-S. (2013). Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nature Biotechnology 31, 230.
    Cong, L., Ran, F.A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P.D., Wu, X., Jiang, W., Marraffini, L.A., et al. (2013). Multiplex Genome Engineering Using CRISPR/Cas Systems. Science 339, 819-823.
    Craene, B.D., and Berx, G. (2013). Regulatory networks defining EMT during cancer initiation and progression. Nature Reviews Cancer 13, 97-110.
    Cui, Z., Renfu, Q., and Jinfu, W. (2018). Development and application of CRISPR/Cas9 technologies in genomic editing. Hum Mol Genet.
    Doller, A., Akool el, S., Huwiler, A., Muller, R., Radeke, H.H., Pfeilschifter, J., and Eberhardt, W. (2008). Posttranslational modification of the AU-rich element binding protein HuR by protein kinase Cdelta elicits angiotensin II-induced stabilization and nuclear export of cyclooxygenase 2 mRNA. Mol Cell Biol 28, 2608-2625.
    Dominguez, A.A., Lim, W.A., and Qi, L.S. (2016). Beyond editing: repurposing CRISPR-Cas9 for precision genome regulation and interrogation. Nat Rev Mol Cell Biol 17, 5-15.
    Eramo, A., Lotti, F., Sette, G., Pilozzi, E., Biffoni, M., Di Virgilio, A., Conticello, C., Ruco, L., Peschle, C., and De Maria, R. (2008). Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death Differ 15, 504-514.
    Gasiunas, G., Barrangou, R., Horvath, P., and Siksnys, V. (2012). Cas9–crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proceedings of the National Academy of Sciences 109, E2579-E2586.
    Heler, R., Marraffini, L.A., and Bikard, D. (2014). Adapting to new threats: the generation of memory by CRISPR-Cas immune systems. Molecular Microbiology 93, 1-9.
    Hilton, I.B., D'Ippolito, A.M., Vockley, C.M., Thakore, P.I., Crawford, G.E., Reddy, T.E., and Gersbach, C.A. (2015). Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nature Biotechnology 33, 510-517.
    Hsu, P.D., Lander, E.S., and Zhang, F. (2014). Development and applications of CRISPR-Cas9 for genome engineering. Cell 157, 1262-1278.
    Huang, Y.-H., Su, J., Lei, Y., Brunetti, L., Gundry, M.C., Zhang, X., Jeong, M., Li, W., and Goodell, M.A. (2017). DNA epigenome editing using CRISPR-Cas SunTag-directed DNMT3A. Genome Biology 18, 176.
    Hwang, W.Y., Fu, Y., Reyon, D., Maeder, M.L., Tsai, S.Q., Sander, J.D., Peterson, R.T., Yeh, J.R.J., and Joung, J.K. (2013). Efficient genome editing in zebrafish using a CRISPR-Cas system. Nature Biotechnology 31, 227.
    Jiang, F., and Doudna, J.A. (2017). CRISPR–Cas9 Structures and Mechanisms. Annual Review of Biophysics 46, 505-529.
    Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J.A., and Charpentier, E. (2012). A Programmable Dual-RNA–Guided DNA Endonuclease in Adaptive Bacterial Immunity. Science 337, 816-821.
    Jinek, M., East, A., Cheng, A., Lin, S., Ma, E., and Doudna, J. (2013). RNA-programmed genome editing in human cells. eLife 2, e00471.
    Kakuguchi, W., Kitamura, T., Kuroshima, T., Ishikawa, M., Kitagawa, Y., Totsuka, Y., Shindoh, M., and Higashino, F. (2010). HuR knockdown changes the oncogenic potential of oral cancer cells. Mol Cancer Res 8, 520-528.
    Kalluri, R., and Neilson, E.G. (2003). Epithelial-mesenchymal transition and its implications for fibrosis. Journal of Clinical Investigation 112, 1776-1784.
    Kalluri, R., and Weinberg, R.A. (2009). The basics of epithelial-mesenchymal transition. Journal of Clinical Investigation 119, 1420-1428.
    Lamouille, S., Xu, J., and Derynck, R. (2014). Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol 15, 178-196.
    Larson, M.H., Gilbert, L.A., Wang, X., Lim, W.A., Weissman, J.S., and Qi, L.S. (2013). CRISPR interference (CRISPRi) for sequence-specific control of gene expression. Nature Protocols 8, 2180.
    Li, Z. (2013). CD133: a stem cell biomarker and beyond. Experimental Hematology & Oncology 2, 17.
    Ma, W.-J., Cheng, S., Campbell, C., Wright, A., and Furneaux, H. (1996). Cloning and Characterization of HuR, a Ubiquitously Expressed Elav-like Protein. Journal of Biological Chemistry 271, 8144-8151.
    Makarova, K.S., Haft, D.H., Barrangou, R., Brouns, S.J., Charpentier, E., Horvath, P., Moineau, S., Mojica, F.J., Wolf, Y.I., Yakunin, A.F., et al. (2011). Evolution and classification of the CRISPR-Cas systems. Nat Rev Microbiol 9, 467-477.
    Makarova, K.S., Zhang, F., and Koonin, E.V. (2017). SnapShot: Class 2 CRISPR-Cas Systems. Cell 168, 328-328 e321.
    Mali, P., Yang, L., Esvelt, K.M., Aach, J., Guell, M., DiCarlo, J.E., Norville, J.E., and Church, G.M. (2013). RNA-Guided Human Genome Engineering via Cas9. Science 339, 823-826.
    Marraffini, L.A. (2015). CRISPR-Cas immunity in prokaryotes. Nature 526, 55-61.
    Mojica, F.J.M., and Rodriguez-Valera, F. (2016). The discovery of CRISPR in archaea and bacteria. The FEBS Journal 283, 3162-3169.
    Nakajima, S., Doi, R., Toyoda, E., Tsuji, S., Wada, M., Koizumi, M., Tulachan, S.S., Ito, D., Kami, K., Mori, T., et al. (2004). N-Cadherin Expression and Epithelial-Mesenchymal Transition in Pancreatic Carcinoma. Clinical Cancer Research 10, 4125-4133.
    Oost, J.v.d. (2013). New Tool for Genome Surgery. Science 339, 768-770.
    Park, E.K., Lee, J.C., Park, J.W., Bang, S.Y., Yi, S.A., Kim, B.K., Park, J.H., Kwon, S.H., You, J.S., Nam, S.W., et al. (2015). Transcriptional repression of cancer stem cell marker CD133 by tumor suppressor p53. Cell Death & Disease 6, e1964-e1964.
    Platt, R.J., Chen, S., Zhou, Y., Yim, M.J., Swiech, L., Kempton, H.R., Dahlman, J.E., Parnas, O., Eisenhaure, T.M., Jovanovic, M., et al. (2014). CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell 159, 440-455.
    Pourcel, C., Salvignol, G., and Vergnaud, G. (2005). CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology 151, 653-663.
    Qi, Lei S., Larson, Matthew H., Gilbert, Luke A., Doudna, Jennifer A., Weissman, Jonathan S., Arkin, Adam P., and Lim, Wendell A. (2013). Repurposing CRISPR as an RNA-Guided Platform for Sequence-Specific Control of Gene Expression. Cell 152, 1173-1183.
    Ran, F.A., Hsu, P.D., Wright, J., Agarwala, V., Scott, D.A., and Zhang, F. (2013). Genome engineering using the CRISPR-Cas9 system. Nat Protoc 8, 2281-2308.
    Silanes, I.L.d., Lal, A., and Gorospe, M. (2005). HuR: Post-Transcriptional Paths to Malignancy. RNA Biology 2, 11-13.
    Song, J., Yang, D., Xu, J., Zhu, T., Chen, Y.E., and Zhang, J. (2016). RS-1 enhances CRISPR/Cas9- and TALEN-mediated knock-in efficiency. Nature Communications 7.
    Tanenbaum, M.E., Gilbert, L.A., Qi, L.S., Weissman, J.S., and Vale, R.D. (2014). A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell 159, 635-646.
    Tang, K.H., Ma, S., Lee, T.K., Chan, Y.P., Kwan, P.S., Tong, C.M., Ng, I.O., Man, K., To, K.-F., Lai, P.B., et al. (2012). CD133+ liver tumor-initiating cells promote tumor angiogenesis, growth, and self-renewal through neurotensin/interleukin-8/CXCL1 signaling. Hepatology 55, 807-820.
    Tran, H., Maurer, F., and Nagamine, Y. (2003). Stabilization of Urokinase and Urokinase Receptor mRNAs by HuR Is Linked to Its Cytoplasmic Accumulation Induced by Activated Mitogen-Activated Protein Kinase-Activated Protein Kinase 2. Molecular and Cellular Biology 23, 7177-7188.
    Wang, W., Caldwell, M., Lin, S., Furneaux, H., and Gorospe, M. (2000). HuR regulates cyclin A and cyclin B1 mRNA stability during cell proliferation. The EMBO Journal 19, 2340-2350.
    Weigmann, A., Corbeil, D., Hellwig, A., and Huttner, W.B. (1997). Prominin, a novel microvilli-specific polytopic membrane protein of the apical surface of epithelial cells, is targeted to plasmalemmal protrusions of non-epithelial cells. Proceedings of the National Academy of Sciences 94, 12425-12430.
    Wu, Y., and Wu, P.Y. (2009). CD133 as a Marker for Cancer Stem Cells: Progresses and Concerns. Stem Cells and Development 18, 1127-1134.
    Yin, A.H., Miraglia, S., Zanjani, E.D., Almeida-Porada, G., Ogawa, M., Leary, A.G., Olweus, J., Kearney, J., and Buck, D.W. (1997). AC133, a Novel Marker for Human Hematopoietic Stem and Progenitor Cells. Blood 90, 5002-5012.
    Zhang, J.-P., Li, X.-L., Li, G.-H., Chen, W., Arakaki, C., Botimer, G.D., Baylink, D., Zhang, L., Wen, W., Fu, Y.-W., et al. (2017). Efficient precise knockin with a double cut HDR donor after CRISPR/Cas9-mediated double-stranded DNA cleavage. Genome Biology 18.
    Zhu, X., Xu, Y., Yu, S., Lu, L., Ding, M., Cheng, J., Song, G., Gao, X., Yao, L., Fan, D., et al. (2014). An Efficient Genotyping Method for Genome-modified Animals and Human Cells Generated with CRISPR/Cas9 System. Scientific Reports 4.

    QR CODE