簡易檢索 / 詳目顯示

研究生: 林裕軒
Lin, Yu Hsuan
論文名稱: 精準接枝共聚物之自組裝行為
The Self-assembly Behavior of Exact Graft Copolymer
指導教授: 陳信龍
Chen, Hsin Lung
口試委員: 曹正熙
Tsao, Cheng Si
陳信龍
Chen, Hsin Lung
陳俊太
Chen, Jiun Tai
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 85
中文關鍵詞: 精準接枝共聚物小角度X光散射PS-g-P2VP自組裝
外文關鍵詞: exact graft copolymer, domain spacing, PS-g-P2VP, order-disorder transition
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 精準接枝的共聚物(Exact graft copolymer、簡稱EGC)是一種具有被精確定義出分子參數的共聚物,這些分子參數包含了每一個高分子所具有的接枝數目(the number of grafts per molecule)、接枝的長度(the length of the grafts)、在主鏈上接枝點的分布(the location of junction points in the backbone)。由於每一個高分子存在著許多接枝點(junction points),所以可能導致EGC的相行為強烈地偏離嵌段共聚物(block copolymer、簡稱BCP)。在此研究中,我們有系統性的探索PS-g-P2VP 所形成的EGC之相行為,其中包含接上兩條PS側鏈和三條PS側鏈的EGC,利用不同接枝數目的EGC來了解接枝形態在高分子微相分離(microphase-separated)的結構和order-disorder transition (ODT)的影響。我們發現EGC高分子的TODT傾向於隨著接枝高分子鏈的數目增加而上升。然而,domain spacing並沒有隨著接枝高分子鏈的數目增加而呈現連續漸進的改變,在實驗上,我們觀察到擁有兩條接枝側鏈的EGC具有最大的domain spacing。我們藉由在接枝點的限制下,利用高分子鏈段的堆疊(packing)模式以及高分子鏈構形熵(conformational entropy)的改變來解釋實驗上所觀察到的現象。


    Exact graft copolymer (EGC) is a type of copolymer with precisely defined molecular parameters, including the number of grafts per molecule, the length of the grafts and the location of junction points in the backbone. The presence of multiple junction points per molecule may cause the phase behavior of EGC to deviate strongly from that of the corresponding diblock copolymer. In the present study, we systematically investigate the phase behavior of the EGC PS-g-P2VP with two or three PS grafts per molecule to seek a general understanding on the effect of the graft architecture on the microphase-separated structure and order-disorder transition (ODT). It was found that TODT of the EGC tended to increase with increasing number of graft chain per molecule. Nevertheless, the domain spacing did not exhibit a monotonic change with such a parameter, as the EGC with two graft chains per molecule showed the largest domain spacing. The experimental observations were explained by the packing and the entropy of the constituting chains under the junction constraint.

    目錄 致謝……………………………………………………………………………………I 摘要…………………………………………………………………………………IV Abstract………………………………………………………………………………V 目錄…………………………………………………………………………………VI 圖目錄……………………………………………………………………………VIII 表目錄……………………………………………………………………………… X 第一章、導論 ………………………………………………………………………1 1.1 精準接枝之共聚物簡介 …………………………………………………1 1.2 逐步跌代法 ………………………………………………………………4 1.3 嵌段共聚物之相行為 ……………………………………………………6 1.4 接枝共聚物之相行為 ……………………………………………………8 1.5 嵌段共聚物與接枝共聚物之差異 ………………………………………12 1.6 Mean-field Theory與Fluctuaction theory ………………………………14 第二章、研究動機與目的 …………………………………………………………17 第三章、實驗部分 …………………………………………………………………18 3.1 實驗材料 …………………………………………………………………18 3.2 實驗儀器與方法 …………………………………………………………22 3.3 製備精準接枝共聚物樣品 ………………………………………………23 第四章、結果與討論 ………………………………………………………………24 4.1 精準接枝共聚物之小角度X光散射分析………………………………24 4.1.1 PS-b-P2VP (EG1)之SAXS分析………………………………………24 4.1.2 EG2之SAXS分析……………………………………………………34 4.1.3 EG3之SAXS分析……………………………………………………42 4.1.4 精準接枝共聚物之Domain Spacing和ODT之分析與討論 ………50 4.2 精準接枝共聚物之熱力學模型…………………………………………54 4.2.1 PS-b-P2VP之Domain Spacing ………………………………………55 4.2.2 EG(PS-P2VP)n之Domain Spacing …………………………………60 4.2.3 以EG1之Domain Spacing表示EGn之Domain Spacing …………66 4.2.4 EGC之熱力學模型預測與實驗結果………………………………69 4.2.4.1 EGC之熱力學模型預測(一)……………………………………69 4.2.4.2 EGC之熱力學模型預測(二)……………………………………73 4.2.4.3 EGC熱力學模型之表面能效應…………………………………77 4.2.5 Order-Disorder Transition Temperature of EGC………………………80 第五章、結論 ………………………………………………………………………82 第六章、參考文獻 …………………………………………………………………83

    1. Akira Hirao, Kota Murano, Ryosuke Kurokawa, Takumi Watanabe, and Kenji Sugiyama. Macromolecules 2009, 42, 7820–7827.
    2. Akira Hirao, Masahiro Uematsu, Ryosuke Kurokawa, and Takashi Ishizone. Macromolecules 2011, 44, 5638–5649.
    3. Akira Hirao, Kota Murao, Ahmed Abouelmagd, Masahiro Uematsu, Shotaro Ito, Raita Goseki, and Takashi Ishizone. Macromolecules 2011, 44, 3302–3311.
    4. Paraskeva, S.; Hadjichristidis, N. J. Polym. Sci., Part A: Polym.Chem. 2000, 38, 931-935.
    5. Matsen, M. W.;Bates, F. S. J. Chem. Phys. 1997, 106, 2436.
    6. Hadjichristidis, N.;Pispas, S.;Floudas, G. Block Copolymer : Synthetic Srategies, Physical Properties, and Applications 2003.
    7. Leibler, L. Macromolecules 1980, 13, (6), 1602–1617.
    8. Matsen, M. W.;Bates, F. S. Macromolecules 1996, 29, (4), 1091–1098.
    9. Liangshun Zhang, Jiaping Lin, and Shaoliang Lin. J. Phys. Chem. B 2008, 112, 9720–9728.
    10. M. W. Matsen. Macromolecules 2012, 45, 2161−2165.
    11. Liangshun Zhang, Jiaping Lin, and Shaoliang Lin. J. Phys. Chem. B 2007, 111, 9209-9217.
    12. Frank S. Bates, Jeffrey H. Rosedale, and Glenn H. Fredrickson, J. Chem. Phys. 1990, 92, 6255-6270.
    13. Ludwik Leibler. Macromolecules 1980, 13, 1602−1617.
    14. G. H. Fredrickson and E. Helfand. J. Chem. Phys. 1987, 87, 697-705.
    15. Frank S. Bates, Glenn H. Fredrickson. Annu. Rev. Phys. Chem. 1990, 41, 525-57.
    16. N. P. Balsara, M. Tirrell, and T. P. Lodge. Macromolecules 1991, 24, 1975–1986.
    17. H. Eugene Stanley. Journal of Statistical Physics, Vol. 36, Nos. 5/6, 1984.
    18. Monica Olvera de la Cruz et al., Macromolecules, 1986, 19, 2501–2508.
    19. Bhanu Nandan, Chia-Hua Lee, Hsin-Lung Chen, and Wen-Chang Chen. Macromolecules 2005, 38, 10117-10126.
    20. Bhanu Nandan, Chia-Hua Lee, Hsin-Lung Chen, and Wen-Chang Chen. Macromolecules 2006, 39, 4460-4468.
    21. Wei-Shan Chiang, Chia-Hung Lin, Bhanu Nandan, Chao-Ling Yeh, M. Habibur Rahman, Wen-Chang Chen, and Hsin-Lung Chen. Macromolecules 2008, 41, 8138-8147.
    22. Wei-Tzu Kuo, Hsin-Lung Chen, Raita Goseki, Akira Hirao, and Wen-Chang Chen. Macromolecules 2013, 46, 9333–9340.
    23. Hsin-Lung Chen, Jiang-Shing Lu, Chi-Heisn Yu, Chao-Lin Yeh, U-Ser Jeng, and Wen-Chang Chen. Macromolecules 2007, 40, 3271-3276.
    24. Ilja Gunkel and Thomas Thurn-Albrecht. Macromolecules 2012, 45, 283−291.
    25. Takeji Hashimoto, Keisuke Kowsaka, Mitsuhiro Shibayama, and Hiromichi Kawail. Macromolecules, 1986, 19, 754-762.
    26. Takeji Hashimoto, Mineo Fujimura, and Hiromichi Kawai. Macromolecules, 1980, 13, 1660-1669.
    27. Takeji Hashimoto, Mitsuhiro Shibayama, and Hiromichi Kawai. Macromolecules, 1980, 13, 1237-1247.
    28. Tadanori Koga and Tsuyoshi Koga, Takeji Hashimoto. J. Chem. Phys., Vol. 110, No. 22, 8 June 1999.
    29. Tadanori Koga, Tsuyoshi Koga, and Takeji Hashimoto. PHYSICAL REVIEW E, 1999, VOLUME 60, NUMBER 2.
    30. Sangwoo Lee, Timothy M. Gillard, and Frank S. Bates. AIChE Journal, September 2013, Vol. 59, No. 9, 3502–3513.
    31. John M. Zielinski, Richard J. Spontak. Macromolecules, 1992, 25, 653-662.
    32. G. Floudas, N. Hadjichristidis and H. Iatrod, T. Pakula and E. W. Fischer. Macromolecules, 1994, 27, 7735-7746.
    33. Zha et al., Macromolecules, 2007, 40, 2109–2119.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE