簡易檢索 / 詳目顯示

研究生: 紀韋安
Ji, Wei-An
論文名稱: 利用值域等價電路技術來優化跨時間框架以改善有界序向電路的等價驗證之研究
Enhancing Bounded Sequential Equivalence Checking with Cross-timeframe Optimization by Using Range-equivalent Circuits
指導教授: 王俊堯
Wang, Chun-Yao
口試委員: 黃世旭
黃婷婷
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 22
中文關鍵詞: BSECCircuit Optimizationequivalence checking
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 這個研究提出一個基於值域等價電路技術(range-equivalent circuit technique)的
    方法來加速以可滿足性問題為基底(SAT-based)的有界序向電路的等價驗
    證(Bounded Sequential Equivalence Checking)。給定兩個需要驗證的序向電路,
    我們不直接展開這兩個序向電路產生的銜接電路,在展開一個銜接電路的時間框
    架以前,我們反覆的利用值域等價電路技術來縮小銜接電路。這是因為前面的時
    間框架可以被視為一個樣式的產生器(pattern generator),並且這個樣式的產生器
    只需要傳遞前面時間框架的值域給下一個時間框架。實驗結果顯示,當有界序向
    電路達到同樣深度時,跟之前的研究比較起來,我們提出的方法在IWLS2005的測
    試電路上可以節省高達91百分比的驗證時間。


    This paper presents a method based on
    range-equivalent circuit technique for SAT-based
    bounded sequential equivalence checking.
    Given two sequential circuits to
    be verified, instead of straightforward unrolling the miter of two
    sequential circuits, we iteratively minimize the miter with a range-equivalent
    circuit technique before adding a new timeframe.
    This is because the previous timeframes can be
    seen as a pattern generator that feeds input patterns to the next
    timeframe and only the ranges of previous timeframes are required information for the next
    timeframe. Experimental results show that the proposed method saved up to 91 percent of
    verification time for reaching the same bounded depth compared
    with previous work on a set of IWLS2005 benchmarks.

    中文摘要 Abstract Acknowledgement Contents List of Tables List of Figures 1 Introduction 2 Preliminaries 2.1 SAT-based BSEC 2.2 Range-equivalent Circuit 3 An Overview 4 Proposed Algorithm 4.1 Example 5 Experimental Results 5.1 SAT-based BSEC with a Fixed Bounded Depth 5.2 SAT-based BSEC with a CPU Time Limit 36000s 6 Conclusion Bibliography

    [1] J. Baumgartner and H. Mony, “Maximal Input Reduction of Sequential
    Netlists via Synergistic Reparameterization and Localization Strategies,”
    in Proc. Advanced Research Working Conference on Correct Hardware
    Design and Verification Methods, 2005, pp. 222-237.
    [2] Berkeley Logic Synthesis and Verification Group, “ABC:
    A System for Sequential Synthesis and Verification,”
    http://www.eecs.berkeley.edu/ alanmi/abc/.
    [3] A. Biere, et al. “Symbolic Model Checking Using SAT Procedures
    instead of BDDs,” in Proc. DAC, 1999, pp. 317-320.
    [4] A. Biere, et al. “Bounded Model Checking,” Advances in Computers,
    vol. 58, 2003, pp. 117-148.
    [5] A. Biere, et al. “Symbolic Model Checking without BDDs,” in
    Proc. Tools and Algorithms for the Construction and Analysis of
    Systems, 1999, pp. 193-207.
    [6] D. Brand, “Verification of Large Synthesized Designs,” in Proc. ICCAD,
    1993, pp. 534-537.
    [7] Lynn C. L. Chang, et al. “Speeding up Bounded Sequential Equivalence
    Checking with Cross-Timeframe State-Pair Constraints from Data
    Learning,” in Proc. ITC, 2009, pp. 1-8.
    [8] P. Chauhan, et al., “A SAT-Based Algorithm for Reparameterization in
    Symbolic Simulation,” in Proc. DAC, 2004, pp. 524-529.
    [9] Y. C. Chen and C. Y. Wang, “An Implicit Approach to Minimizing
    Range-Equivalent Circuits,” IEEE TCAD, vol. 27, pp. 1942-1955,
    Nov. 2008.
    [10] Y. C. Chen and C. Y. Wang, “Node Addition and Removal in the
    Presence of Don’t Cares,” in Proc. DAC, 2010, pp. 505-510.
    [11] Y. C. Chen and C. Y. Wang, “Fast Node Merging with Don’t Cares Using
    Logic Implications,” IEEE TCAD, vol. 29, pp. 1827-1832, Nov. 2010.
    [12] Y. C. Chen and C. Y. Wang, “Logic Restructuring Using Node Addition
    and Removal,” IEEE TCAD, vol. 31, pp. 260-270, Feb. 2012.
    [13] N. Een and A. Mishchenko, “A Fast Reparameterization Procedure,” in
    Proc. DIFTS, 2013, pp. 4-8.
    [14] Niklas Een and Niklas Srensson, “MiniSat - A SAT Solver with Conflict-
    Clause Minimization,” in Proc. SAT, 2005.
    [15] E. I. Goldberg, et al. “Using SAT for Combinational Equivalence
    Checking,” in Proc. DATE, 2001, pp. 114-121.
    [16] S. Y. Huang, et al. “AQUILA: An Equivalence Checking System for
    Large Sequential Designs,” IEEE TC, vol. 49, pp. 443-464, May 2000.
    [17] A. Mishchenko, et al. “DAG-Aware AIG Rewriting: A Fresh Look at
    Combinational Logic Synthesis,” in Proc. DAC, 2006, pp. 532-536.
    [18] J. P. Marques-Silva and K.A. Sakallah, “GRASP - A New Search
    Algorithm for Satisfiability,” IEEE TC, vol. 48, pp. 506-521, May 1999.
    [19] J. Moondanos, et al. “CLEVER: Divide and Conquer Combinational
    Logic Equivalence VERification with False Negative Elimination,” in
    Proc. CAV, 2001, pp. 131-143.
    [20] S. M. Plaza, et al., “Node Mergers in the Presence of Don’t Cares,” in
    Proc. ASPDAC, 2007, pp. 414-419.
    [21] M. W. Moskewicz, et al., “Chaff: Engineering an Efficient SAT Solver,”
    in Proc. DAC, 2001, pp. 530-535.
    [22] S. Reda and A. Salem, “Combinational Equivalence Checking Using
    Boolean Satisfiability and Binary Decision Diagrams,” in Proc. DATE,
    2001, pp. 122-126.
    [23] G. S. Tseitin, “On the Complexity of Derivation in Propositional
    Calculus,” in Studies in Constr. Math. and Math. Logic, 1968. pp. 115-
    125.
    [24] A. Veneris, et al. “Logic Verification based on Diagnosis Technique,” in
    Proc. ASPDAC, 2003, pp. 538-543.
    [25] S. C. Wu, et al., “Novel Probabilistic Combinational Equivalence Checking,”
    IEEE TVLSI, vol. 16, pp. 365-375, April 2008.
    [26] W. Wu and M. S. Hsiao, “Mining Global Constraints with Domain
    Knowledge for Improving Bounded Sequential Equivalence Checking,”
    IEEE TCAD, vol. 27, pp. 197-201, Jan. 2006.
    [27] Q. Zhu, et al., “SAT Sweeping with Local Observability Don’t Cares,”
    in Proc. DAC, 2006, pp. 229-234.
    [28] http://iwls.org/iwls2005/benchmarks.html
    [29] http://minisat.se/

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE