研究生: |
陳祖望 Tzu-Wang Chen |
---|---|
論文名稱: |
藉微波電漿輔助化學氣相沉積法合成氧化錫一維奈米結構之研究 The Research of 1D Tin Oxide Nanostructure Synthesized by MPECVD |
指導教授: |
施漢章
Han C. Shih |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2004 |
畢業學年度: | 92 |
語文別: | 中文 |
論文頁數: | 92 |
中文關鍵詞: | 氧化錫 、奈米線 、奈米大頭針 、微波電漿輔助化學氣相沉積法 |
外文關鍵詞: | Tin oxide, nanowire, nanopin, MPECVD |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於奈米材料的尺寸因素,使其與一般結晶或非晶質相原子結構具有特別不同之光、電、磁、熱、聲等物理及化學性質。目前已成為新材料及新光、電、磁元件之建構基石,也是目前國際上重點發展之前瞻性應用研究項目之一。氧化錫的奈米材料在電晶體、太陽能電池、透明導電電極、紫外光或氣體感測器等方面都有非常優越的應用。在本研究中發現,利用微波電漿輔助化學氣相沈積法,以金為觸媒,在矽基板上可合成出氧化錫的「奈米大頭針」(nanopins),因為其特殊的形狀引起了我們的興趣,經過了一番努力,佐以各方面的證據,我們推論其成長機制為「自催化的汽液固機制」(Self-catalytic VLS mechanism)。另外,在無觸媒的氧化鋁基板上也可成功製備出氧化錫之一維奈米結構。在掃瞄式電子顯微鏡(SEM)的觀察下,這些奈米大頭針外型具有一個大頭,以及細而均勻的身體,長度約數微米(micrometer),頭的直徑約50到60奈米(nanometer),身體的部分則約10到20奈米。進一步的分析則利用穿透式電子顯微鏡(TEM)觀察單一奈米線的外觀,並藉由能量散佈X射線光譜(EDX)確定其內含元素種類,再以選區電子繞射圖譜(SAD)配合低掠角X射線結晶繞射(XRD)確定其結晶型為四方晶(tetragonal)的氧化錫金紅石(rutile)結構。
One-dimension tin oxide nano-structures have successfully been synthesized by microwave plasma enhanced chemical vapor deposition (MPECVD). In this study, the tin oxides (SnO2) 「Nanopins」 were fabricated on a silicon subtrate with gold catalyst. In other works, it was also found that SnO2 nanowire can be grown directly on silicon or on alumina substrate. In the first part of this research, the nanopin structure has been collected, because of its interesting morphology, therefore many works have been done to realize the growth mechanism of the 「Nanopin」. After a series of experiments, the growth mechanism is proposed as 「Self-catalytic VLS mechanism」. Scanning electron microscopy (SEM) observations reveal that the nanopins are uniform with a length about several micrometers, 50-60 nm in diameter closing to its head, and 10-20 nm in diameter of its body. The identification of the single nanopin was carried out by transmission electron microscopy (TEM). Energy dispersive X-ray spectroscopy (EDS) and selected-area electron diffraction analysis (SAD) indicate that the nanowires are tetragonal rutile structure of SnO2, and its growth direction is along [001].
1. http://www.zyvex.com/nanotech/feynman.html
2. 陳家俊, 半導體科技, 23期, 2001年12月
3. http://www.newnano.com.tw/index4/data02/whatnano_3.htm
4. R. Kubo, J. Phys. Soc. Jpn. 17, 975 (1962)
5. Y. Wang, N. Herron, J. Phys. Chem. 95, 525 (1991)
6. M. W. Lee, H. Z. Twu, C. C. Chen, C. H. Chen, Appl. Phys. Lett. 79, 3693 (2001)
7. 尹邦耀, 奈米時代, 五南圖書出版股份有限公司, 台北, 2002
8. http://www.dwu.edu.tw/~ce/ycc/forStudent/Tech&Life/Content/NanoTech.htm
9. http://www.angsnanotek.com.tw/ch/ch_nano_intro.htm
10. S. Iijima, Nature 354, 56(1991)
11. 牟中原, 張志玲, 科學發展, 373期, 2004年1月, 44-49頁
12. http://taiwan.cnet.com/news/special/0,2000064597,20086663,00.htm
13. http://www.nano.com.tw/Nano_Intro/
14. Y. Xia, P. Yang, Y. Sun, Y, Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan, Adv. Mater. 15, No. 5, 353 (2003)
15. J. Hu, Y. Bando, Q. Liu, D. Golberg, Adv. Funct. Mater. 13, No. 6, 493 (2003)
16. Z. Liu, D. Zhang, S. Han, C. Li, T. Tang, W. Jin, X. Liu, B. Lei, C. Zhou, Adv. Mater. 15, No. 20, 1754 (2003)
17. Z. L. Wang, Adv. Mater. 15, No. 5, 432 (2003)
18. S. H. Sun, G. W. Meng, Y. W. Wang, T. Gao, M. G. Zhang, Y. T. Tian, X. S. Peng, L. D. Zhang, Appl. Phys. A 76, 287 (2003)
19. Z. W. Pan, Z. R. Dai, Z. L. Wang, Science 291, 1947 (2001)
20. J. K. Jian, X. L. Chen, W. J. Wang, L. Dai, Y. P. Xu, Appl. Phys. A 76, 291 (2003)
21. P. Nguyen, H. T. Ng, J. Kong, A. M. Cassell, R. Quinn, J. Li, J. Han, M. McNeil, M. Meyyappan, Nano Lett. 3, No. 7, 925 (2003)
22. L. B. Fraigi, D. G.. Lamas, N. E. W. de Reca, Mater. Lett. 47, 262 (2001)
23. T. Minami, H. Nanto, S. Takata, Jpn. J. Appl. Phys. 27, L287 (1988)
24. Y. Liu, C. Zheng, W. Wang, C. Yin, G. Wang, Adv. Mater. 13, No. 24, (2001)
25. K. C. Song, Y. Kang, Mater. Lett. 42, 283 (2000)
26. Z. H. Han, N. Guo, F. Q. Li, W. Q. Zhang, H. Q. Zhao, Y. T. Qian, Mater. Lett. 48, 99 (2001)
27. A. C. Bose, D. Kalpana, P. Thangadurai, S. Ramasany, J. Power Sources 107, 138 (2002)
28. E. R. Leite, I. T. Weber, E. Longo, J. A. Varela, Adv. Mater. 12, 965 (2002)
29. G. S. Pang, S. G. Chen, Y. Koltypin, A. Zaban, S. H. Peng, A. Gedanken, Nano Lett. 1, 723 (2001)
30. A. Maddalena, R. Del Maschio, S. Dire, A. Raccanelli, J. Non-Cryst. Solids 121, 365 (1990)
31. D. Wang, S. Wen, J. Chen, S. Zhang, F. Li, Phys. Rev. B 49, 14282 (1994)
32. C. H. Shek, J. K. C. Lai, G. M. Lin, Nanostruct. Mater. 11, 887 (1999)
33. D. F. Zhang, L. D. Sun, J. L. Yin, C. H. Yan, Adv. Mater. 15, No, 12, 1022 (2003)
34. S. M. Arnold, S. E. Kounce, J. Appl. Phys. 27, 964 (1956)
35. Z. R. Dai, Z. W. Pan, Z. L. Wang, Adv. Funct. Mater. 13, No. 1, 9 (2003)
36. B. Lewis, in Crystal Growth(Ed: B. R. Pamplin), Pergamon, Oxford, pp.23-63 (1980)
37. R. S. Wagner, W. C. Ellis, Appl. Phys. Lett. 4, 89 (1964)
38. J. D. Holmes, K. P. Johnston, R. C. Doty, B. A. Korgel, Science 287, 1471 (2000)
39. T. J. Trentler, K. M. Kickman, S. C. Geol, A. M. Viano, P. C. Gibbons, W. E. Buhro, Science 270, 1791 (1995)
40. Y. Wu, H. Yan, M. Huang, B. Messer, J. Song, P. Yang, Chem. Eur. J. 8, 1260 (2002)
41. X. Lu, T. Hanrath, K. P. Johnston, B. A. Korgel, Nano. Lett. 3, 93 (2003)
42. J. D. Holmes, K. P. Johnston, R. C. Doty, B. A. Korgel, Science 287, 1471 (2000)
43. N. Wang, Y. H. Tang, Y. F. Zhang, C. S. Lee, I. Bello, S. T. Lee, Chem. Phys. Lett. 299, 237 (1999)
44. M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, Science 292, 1897 (2001)
45. B. Zhank, Y. Wu, P. Yang, J. Liu, Adv. Mater. 14, 122 (2002)
46. G. S. Park, W. B. Choi, J. M. Kim, Y. C. Choi, Y. H. Lee, C. B. Lim, J. Cryst. Growth 220, 494 (2002)
47. C. Liang, G. Meng, Y. Lei, F. Phillipp, L. Zhang, Adv. Mater. 13, 1330 (2001)
48. R. Q. Zhang, Y. Lifshitz, S.T. Lee, Adv. Mater. 15, No. 7-8, 635 (2003)
49. 曹□光, 連大成, 物理雙月刊(廿三卷四期), 2001年8月
50. J. C. Hulteen, C. R. Martin, J. Mater. Chem. 7, 1075 (1997)
51. R. L. Fleisher, P. B. Price, R. M. Walker, Nuclear Tracks in Solids, University of California press. Berkeley, CA (1975)
52. A. Despic, V. P. Parkhutik, in Modern Aspects of Electrochemistry (Eds: J. O. Bockris, R. E. White, B. E. Conway). Vol. 20. Plenum Press. New York, Ch. 6 (1989)
53. A. Kolmakov, Y. Zhang, M. Moskovits, Nano Lett. 3, No.8, 1125 (2003)
54. B. Gates, B. Mayers, A. Grossman, Y. Xia, Adv. Mater. 14, 1749 (2002)
55. J. J. Zhu, Z. H. Lu, S. T. Aruna, D. Aurbach, A. Gedanken, Chem. Mater. 12, 2557 (2000)
56. E. Comini, G. Faglia, G. Sberveglieri, Z. W. Pan, Z. L. Wang, Appl. Phys. Lett. 81, 1869 (2002)
57. M. Law, H. Kind, B. Messer, F. Kim, P. Yang, Angew. Chem. Int. Ed. 41, No. 13, 2405 (2002)
58. J. Chrzanowski, H. Teterycz, R. Klimkiewicz, J. Electrochem. Soc. 150 (6), H140 (2003)
59. J. Watson, Sens. Actuators 5, 29 (1984)
60. A. Kolmakov, Y. Zhang, G. Cheng, M. Moskovits, Adv. Mater. 15, No. 12, 997 (2003)
61. A. Maiti, J. A. Rodriquez, M. Law, P. Kung, J. R. McKinney, P. Yang, Nano Lett. 3, No. 8, 1025 (2003)
62. M. S. Arnold, P. Avouris, Z. W. Pan, Z. L. Wang, J. Phys. Chem. B 107, 659 (2003)
63. G. Sberveglieri, Sens. Actuators B 6, 64 (1992)
64. S. Ferrere, A. Zaban, B. A. Gregg, J. Phys, Chem. B 101, 4490 (1997)
65. C. M. Lampert, Sol. Energy Mater. 6, 1 (1991)
66. G. Sberveglieri, Sens. Actuators B 6, 239 (1992)
67. A, Dieguez, Sens. Actuators B 31, 1 (1996)
68. G. J. Li, X. H. Zhang, S. Kawi, Sens. Actuators B 60, 64 (1999)
69. Y. Chen, X. Cui, K. Zhang, D. Pan, S. Zhang, B. Wang, J. G. Hou, Chem. Phys. Lett. 369, 16 (2003)
70. J. Q. Hu, X. L. Ma, N. G.. Shang, Z. Y. Xie, N. B. Wong, C. S. Lee, S. T. Lee, J. Phys. Chem. B 106, 3823 (2002)
71. F. Gu, S. F. Wang, C. F. Song, M. K. Lü, Y. X. Qi, G. J. Zhou, D. Xu, D. R. Yuan, Chem. Phys. Lett. 372, 451 (2003)