研究生: |
王教祐 Wang, Chiao-You |
---|---|
論文名稱: |
光聲定量血氧飽和濃度量測問題:蒙地卡羅模擬驗證 Problems of Quantitative Photoacoustic Measurement of Blood Oxygen Saturation:a Monte Carlo Investigation |
指導教授: |
李夢麟
Lee, Meng-Lin |
口試委員: |
李夢麟
鐘太郎 翁詠祿 |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2013 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 61 |
中文關鍵詞: | 光聲造影 、血氧飽和濃度 、蒙地卡羅 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
光聲造影跟現有的血氧飽和濃度量測技術相比有著高解析度、高天生對比度及非侵入性等優勢。本論文主要的工作是對光聲造影技術為基礎的血氧飽和濃度定量技術在使用活體應用中遇到的問題作探討與提出解決方法,並使用電腦模擬驗證所提出之演算法是否有改良傳統方法的問題並達到定量血氧飽和濃度量測的目的。在本論文中我們首先對於傳統基於最小平方法之反矩陣運算在活體應用中計算血氧濃度時所會遇到的問題作探討;因傳統的計算方法必須滿足訊號峰值和吸收係數成正比這項基本假設,才能定量的量測血氧濃度,但在活體應用中,目標血管上方通常會有其他組織影響雷射能量密度的分佈,使達到目標血管的能量密度會隨雷射光波長改變,影響訊號峰值和吸收係數的正比性造成估計濃度時的誤差;此外當目標血管的吸收係數隨著雷射光波長和血氧濃度改變時,此吸收係數的擾動也會影響上方組織的雷射能量密度分佈,進而影響傳統方法計算血氧濃度時的基本假設。在電腦模擬驗證中,我們利用蒙地卡羅模型來模擬組織和目標血管在雷射光照射後之能量密度分佈,並考慮了蒙地卡羅模擬在對於不同光子數量和不同的目標血管幾何結構等變因之穩定性,選擇適當的參數後模擬組織能量密度隨雷射光波長改變和吸收係數擾動兩種情況,再以傳統基於最小平方法之反矩陣運算估計目標血管的血氧濃度,估計結果驗證了若在基本假設中訊號峰值和吸收係數的正比性受到影響之情況下,直接使用基於最小平方法之反矩陣運算求得的血氧濃度和預設值會產生誤差,而透過我們所提出的針對能量密度變異之最佳化演算法,可有效算出一最佳化的能量密度補償係數矩陣,改良傳統之反矩陣運算在能量密度變異情況中估計之誤差,估計出的結果更接近預設值,也證明了此演算法有潛力幫助我們在活體應用中利用光聲造影達到定量血氧飽和濃度量測的目的。
Blood oxygenation measurement with photoacoustic techniques has the advantages of good ultrasonic resolution and high intrinsic optical absorption contrast and is non-invasive compared with other measurement techniques. The purpose of this study is to develop a photoacoustic-imaging-based quantitative measurement technique for the determination of blood oxygen saturation in-vivo application, and verify its feasibility by computer simulation to improve the problems of blood oxygen saturation estimated by traditional method. In this study, we first make discussions for problems of traditional least-squares-based matrix inverse method. The well quantitative measurement of blood oxygen saturation by the traditional method have to satisfy the basic assumption that the signal peak value is proportional to the absorption coefficient. However, in real situations, tissues above the target blood vessel will vary the laser fluence on the target vessel at different wavelengths. Thus, traditional “Least Squares” method can not offer good blood-oxygenation measurement. Furthermore, fluence above target vessel will be perturbed due to an absorption perturbation which also influences the basic assumption. In computer simulations, we used a Monte Carlo simulation of photon transport, and determined the appropriate number of photon packets and structure of target vessel to achieve stabilized SO2 measurement by used the energy deposition results at several wavelengths, and the measurement results showed that the blood oxygenation estimated by the traditional “Least Squares” method is lower than the default blood oxygenation values. To foster the practicability of this photoacoustic blood oxygenation measurement technique, here a “Fluence Compensation” algorithm is proposed to obtain fluence compensation coefficients with an optimization algorithm, which compensates the fluence changes depending on different wavelengths, and the proposed algorithm provides better estimation for blood oxygenation. It is demonstrated that our mathematical model has the potential to perform blood-oxygenation measurement for in vivo applications.
[1] A. G. Bell, “Production of sound by radiant energy”, Manufacturer and builder,
vol. 13, pp. 156-158(1881)
[2] D. Xing, and L. Z. Xiang,”Photoacoustic and Thermoacoustic Imaging Application in Cancer Early Detection and Treatment Monitoring”, Proc. of SPIE Vol. 6826, 68260B, (2007)
[3] M. Pramanik, G. Ku, C. H. Li, and L. V. Wang, “Design and evaluation of a novel breast cancer detection system combining both thermo acoustic (TA) and photoacoustic (PA) tomography” ,Medical Physics 35, 2218-2223 (2008).
[4] J. T. Oh, M. L. Li, H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Three-dimensional imaging of skin melanoma in vivo by dual-wavelength photoacoustic microscopy,” J. Biol. Opt. 11, 034032 (2006).
[5] H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Imaging acute thermal burns by photoacoustic microscopy,” J. Biol. Opt. 11, 054033 (2006).
[6] X. Wang, X. Xie, G. Ku, G. Stoica, and L. V. Wang, “Non-invasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography,” Journal of Biomedical Optics 11, 024015 (2006).
[7] H. F. Zhang, K. Maslov, and M. Sivaramakrishnan, “Imaging of hemoglobin oxygen saturation variations in single vessels in vivo using photoacoustic microscopy”, Am. Ind. Phys., July (2007)
[8] C. Kim, C. Favazza, L. V. Wang, “In Vivo Photoacoustic Tomography of Chemicals: High-Resolution Functional and Molecular Optical Imaging at New Depths”, Chem. Rev., 110, 2756–2782(2010).
[9] J. C. Davis, T. K. Hunt, “Problem Wounds: The Role of Oxygen”, New York, Elsevier,17–52(1988).
[10] S. T. Ahn, T. A. Mustoe, “Effects of ischemia on ulcer wound healing: a new model in the rabbit ear, ” Ann. Plast. Surg, 24:17–23(1990).
[11] A.Siddiqui, J. D. Davidson, T. A. Mustoe, “Ischemic tissue oxygen capacitance after hyperbaric oxygen therapy: a new physiologic concept” , Plast. Reconstr. Surg. , 99:148–155(1997).
[12] L. Wu, Y. P. Xia, S. I. Roth, et al. “Transforming growth factor-beta1 fails to stimulate wound healing and impairs its signal transduction in an aged ischemic ulcer model: importance of oxygen and age ”, Am. J. Pathol, 154:301–309(1999).
[13] A. A. Tandara and T. A. Mustoe, “Oxygen in Wound Healing—More than a Nutrient” , World J. Surg. 28, 294(2004).
[14] L. E. Nield, X. Qi, S. J. Yoo, “MRI-based blood oxygen saturation measurements in infants and children with congenital heart disease”, Pediatr Radiol, 32:518–522 (2002)
[15] C. Chandrakala, and D. L. Fraker, “Tumor oxygenation status as a prognostic marker ”, Cancer Lett. 211, 225–235 (2005).
[16] M. Elas, B. B. Williams, A. Parasca, C. Mailer, C. A. Pelizzari, M. A. Lewis, J. N. River, G. S. Karczmar, E. D. Barth, and H. J. Halpern, “Quantitative Tumor Oxymetric Images From 4D Electron Paramagnetic Resonance Imaging (EPRI): Methodology and Comparison With Blood Oxygen Level-Dependent (BOLD) MRI”, Magn. Reson. Med., 49:682–691 (2003)
[17] M. L. Li, J. T. Oh, X. Xie, G. Ku, W. Wang, C. Li, G. Lungu, G. Stoica, and L. V. Wang, “Simultaneous Molecular and Hypoxia Imaging of Brain Tumors In Vivo Using Spectroscopic Photoacoustic Tomography”, Proc. IEEE., 96:481-489(2008)
[18] J. DWinter, M. K. Akens and H.-L. M. Cheng, “Quantitative MRI assessment of VX2 tumor oxygenation changes in response to hyperoxia and hypercapnia”, Phys. Med. Biol,. 56:1225–1242 (2011)
[19] C. K. Liao, P. C. Li, “Optical absorption reconstruction and blood flow measurements using backward mode photoacoustic imaging” , NTUEE, PhD thesis (2007).
[20] K. Maslov, M. Sivaramakrishnan, H. F. Zhang, G. Stoica, and L. V. Wang, “Technical considerations in quantitative blood oxygenation measurement using photoacoustic microscopy in small animal in vivo”, in Photons Plus Ultrasound: Imaging and Sensing 2006, A. A. Oraevsky and L. V. Wang, eds., Proc. SPIE 6086,215-225 (2006).
[21] M. Sivaramakrishnan, K. Maslov, H. F. Zhang,G. Stoica and L. V. Wang,
“Limitations of quantitative photoacoustic measurements of blood oxygenation in small vessels”, Phys. Med. Biol. 52 (2007) 1349–1361.
[22] http://omlc.ogi.edu/spectra/hemoglobin/index.html
[23] B. Chance, E. Borer, A. Evans, G. Holtom, J. Kent, M. Maris, K. Mccully, J. Northrop, and M. Shinkwin, “Optical and Nuclear Magnetic Resonance Studies of Hypoxia in Human Tissueand Tumors”, Ann. N.Y. Acad. Sci. 551, 1 (1988).
[24]Ben Cox, Jan G. Laufer, Simon R. Arridge, Paul C. Beard, ”Quantitative spectroscopic photoacoustic imaging: a review” , Journal of Biomedical Optics 17(6), 061202 (June 2012)
[25] Roger J. Zemp ,“Efficient Green's Function and Jacobian Matrix Calculations for
Optical Tomography Problems Near Boundaries using Phase-Function-Corrected Diffusion Theory Approximations”, Proc. of SPIE Vol. 8578 857813-1 (2013)
[26] Song Hu, Lihong V. Wang, “Photoacoustic imaging and characterization of the microvasculature”, Journal of Biomedical Optics January/February (2010)
[27] J. Laufer, D. Delpy, C. Elwell, and P. Beard,” Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy: application to the measurement of blood oxygenation and haemoglobin concentration”, Phys. Med. Biol.52, 141 (2007).
[28] A. Q. Bauer, R. E. Nothdurft, T. N. Erpelding, L. V. Wang, and J. P. Culver, J. Biomed. “Quantitative photoacoustic imaging: correcting for heterogeneous light fluence distributions using diffuse optical tomography”, Opt. 16, 096016 (2011).
[29] Konstantin Maslov, Hao F Zhang and Lihong V Wang, “Effects of wavelength-dependent fluence attenuation on the noninvasive photoacoustic imaging of hemoglobin oxygen saturation in subcutaneous vasculature in vivo”, Inverse Problems 23 S113–S122 (2007)
[30] S. A. Prahl, M. Keijzer, S. L. Jacques, A. J. Welch ,”A Monte Carlo Model of Light Propagation in Tissue”, SPIE Institute Series Vol. IS 5 (1989)
[31] L. Wang, S. L. Jacques, and L. Zheng, “MCML—Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[32]S. Boyd, L. E. Ghaoui, E. Feron, and V. Balakrishnan, “Linear Matrix Inequalities in System and Control Theory”, S.I.A.M.
[33] S. L. Jacques, “Origins of tissue optical properties in the UVA, visible, and NIR regions” Adv. Opt. Imaging Photon Migrat. 2, 364–369(1996).
[34] I. S. Saidi, “Transcutaneous optical measurement of hyperbilirubinemia in neonates” , PhD Thesis, Rice University, Houston (1992).
[35] P. Valisuo, I. Kaartinen, V. Tuchin, J. Alander, “New closed-form approximation for skin chromophore mapping”, J. Biol. Opt. 16(4), 046012 (2011)
[36] I. S. Saidi, “Transcutaneous optical measurement of hyperbilirubinemia in neonates” , PhD Thesis, Rice University, Houston (1992).
[37] Jain, Anil K, “Fundamentals of Digital Image Processing”, Prentice Hall(1989), 2.8 Block Matrices and Kronecker Products
[38] Shuhui Bu, Zhenbao Liu, Tsuyoshi Shiina, Kengo Kondo,Makoto Yamakawa, Kazuhiko Fukutani, Yasuhiro Someda, and Yasufumi Asao,”Model-Based Reconstruction IntegratedWith Fluence Compensation for Photoacoustic Tomography”, IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 59, NO. 5, MAY (2012)
[39] Jun Xia, Amos Danielli, Yan Liu, Lidai Wang, Konstantin Maslov, and Lihong V. Wang, “Calibration-free quantification of absolute oxygen saturation based on
the dynamics of photoacoustic signals”, OPTICS LETTERS / Vol. 38, No. 15 / August 1, (2013)