簡易檢索 / 詳目顯示

研究生: 許博雅
Hsu, Po-Ya
論文名稱: 可撓式ITO/PEN半固態染料敏化太陽能電池之電極特性與製程研究
Fabrication of Highly Efficient Flexible Dye-sensitized Solar Cells Based on Quasi-solid State Electrolytes
指導教授: 開執中
李欣芳
口試委員: 開執中
季昀
丁志明
童永樑
李欣芳
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 124
中文關鍵詞: 染料敏化太陽能電池半固態電解質可撓式基板
外文關鍵詞: Dye sensitized solar cell (DSC), ITO/PEN, Quasi-solid state electrolyte
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以三種不同組成之二氧化鈦奈米粒子(20nm銳鈦礦相, P25與ST01 ) ,搭配可增長入射光路徑之100nm散射顆粒,製備低溫無黏著劑(binder free)之二氧化鈦漿料,再利用刮刀塗佈法與加壓製程,於ITO/PEN塑膠基板上製作出二氧化鈦光電極應用於可撓式染料敏化太陽能電池。本實驗並以半固態電解質取代液態電解液,藉由添加無機奈米顆粒或高分子膠化劑加以固化離子液體電解質,以改善DSCs元件漏液與封裝困難的問題,經由電池元件組裝及光電特性量測結果顯示,以二氧化鈦奈米顆粒膠化之半固態電解質具有最佳的光電轉換效率。
    藉由不同薄膜厚度、加壓製程與染料吸附條件測試,可得到光電極於ITO/PEN塑膠基板上之製程最佳參數,FE-SEM可觀察光電極經加壓製程處理後,其二氧化鈦奈米顆粒間具有更緊密之連結。分析三種不同二氧化鈦組成之ITO/PEN光電極與化學浸泡沉積法Pt玻璃對電極組裝而成的DSCs元件,發現利用P25 (21nm, 75%銳鈦礦相與25%金紅石相)二氧化鈦奈米顆粒與100 nm (銳鈦礦相) 散射顆粒組成之ITO/PEN 光電極於100 mW/cm2光強度下可得到最佳的光電轉換效率6.53%。利用此光電極分別與濺鍍或浸泡沉積法製備之Pt對電極於ITO/PEN上,所製得之全塑膠基板可撓式染料敏化太陽能電池,可達到最高4.67%之光電轉換效率。


    In this study, several attempts have been made to fabricate highly efficient flexible dye-sensitized solar cells based on quasi-solid state electrolytes. Ionic gel electrolytes by dispersing various nanoparticles or polymers into ionic liquid electrolytes and assembled DSCs were prepared. The DSCs device based on the ionic gel electrolyte solidified by TiO2 nanoparticles yielded the best performance. Three different kinds of the titanium dioxide (20nm pure anatase, P25 and ST01) were dispersed in solvent to prepare binder-free nanocrystalline TiO2 pastes. Incorporation of large nanoparticles (100 nm) has been employed as light-scattering centers to increase the optical length in the film, and an enhanced light-harvesting has effect by scattering. A static mechanical compression technique as the post-treatment is employed to the flexible ITO/PEN photoelectrodes in order to enhance the particles connection.
    The construction of the film was optimized to elicit high photovoltaic performance. Effect of the loading of TiO2 thickness of TiO2 film on the photovoltaic performance was first investigated with the sensitizer N719 in combination of TiO2 solidified quasi-solid electrolyte. A solar cell with platinum-coated FTO glass counter electrode and ITO/PEN photoelectrode, prepared by an ethanol based low-temperature TiO2 paste composed of a mixture of P25 (21nm, 25% rutile and 75% anatase) and 100 nm anatase TiO2 particles, yielded highest conversion efficiencies of 6.53% under 1 sun illumination. All plastic DSCs are also investigated by applying Pt-sputtered or Pt-spread ITO/PEN counter electrodes. The all plastic DSC with Pt-sputtered ITO/PEN counter electrode yields a light to electricity conversion efficiency of 4.67% under 1 sun illumination.

    Table of contents 摘要……………………………………………................................i Abstract…………………………………………………………....ii 誌謝……………………………………………..............................iii List of Figures…………………………………………………..viii List of Tables…………………………………………………….xiv Chapter 1 Introduction 1 Chapter 2 Theory and Literature Review 7 2.1 Dye-Sensitized Solar Cells (DSCs) 7 2.1.1 Operation principle of dye-sensitized solar cells (DSCs) 8 2.1.2 Basic components in DSCs. 11 2.1.2.1 Photoelectrodes 11 2.1.2.2 Dyes 13 2.1.2.3 Electrolytes 15 2.1.2.4 Counter electrodes 17 2.1.3 The photovoltaic performance of a DSC 17 2.1.4 Factors affecting the performance of a DSC 19 2.1.5 Quasi solid state electrolyte 22 2.2 Flexible dye-sensitized solar cells 24 2.2.1 Metal substrates 25 2.2.2 Plastic substrates 26 Chapter 3 Experimental 35 3.1 Experimental procedures 35 3.1.1 The effect of TiO2 nanoparticles in ionic liquid electrolytes on the performance of quasi-solid state dye-sensitized solar cells with glass substrates 38 3.1.1.1 Preparation of double-layer TiO2 electrode 38 3.1.1.2 Preparation of the electrolytes 39 3.1.1.3 Device fabrication 39 3.1.2 Fabrication of highly efficient flexible dye-sensitized solar cells based on quasi-solid state electrolytes 40 3.1.2.1 Preparation of plastic substrate photoelectrodes 40 3.1.2.2 Preparation of the electrolytes 42 3.1.2.3 Device fabrication 43 3.2 Instrumentation 44 3.2.1 Field Emission Gun Scanning Electron Microscopy (FEG-SEM) 45 3.2.2 Electrochemical Impedance Spectra (EIS) 45 3.2.3 Solar simulator 46 3.2.4 Incident Photon to electron Conversion Efficiency (IPCE) 47 3.2.5 UV-Vis. Spectrophotometer 48 3.2.6 Nanometer resolution profilometer 49 3.2.7 XRD 49 3.2.8 Hydraulic press machine 50 Chapter 4 Results and discussion 66 4.1 The effect of TiO2 nanoparticles in ionic liquid electrolytes on the performance of quasi-solid state dye-sensitized solar cells with glass substrates. 66 4.1.1 Optimization of TiO2 film thickness on glass substrates for quasi-solid state electrolyte 67 4.1.2 The photovoltaic performances on DSCs for quasi-solid state electrolytes. 68 4.2 Fabrication of highly efficient flexible dye-sensitized solar cells based on quasi-solid state electrolytes 71 4.2.1 Optimization for film thickness and dye sensitization condition of photoelectrodes 72 4.2.1.1 Optimization for TiO2 film thickness 72 4.2.1.2 Optimization for dye sensitization condition 74 4.2.2 The application of compression method to flexible DSCs 76 4.2.2.1 The relationship between applied pressure and photovoltaic performance in flexible DSCs 76 4.2.3 The effect of TiO2 phases and particle size in flexible DSCs 79 4.2.3.1 The light confinement effect in flexible DSCs 80 4.2.3.2 The effect of TiO2 phases and particle size in flexible DSCs 82 4.2.4 All plastic dye-sensitized solar cells 83 Chapter 5 Conclusions 116 Chapter 6 Future works 118 References 119

    [1] M. Gratzel, Nature, 414, 338-344 (2001)
    [2] M. Gratzel, Nature, 403, 363 -364 (2000)
    [3] R. Katoh, A. Furube, A.V. Barzykin, H. A. Arakawa, M. Tachiya, Coord. Chem. Rev. 248, 13 (2004).
    [4] B. Oregan, M. Gratzel, Nature, 353, 737-740 (1991)
    [5] M. K. Nazeeruddin, A. Key, I. Rodicio, R. Humphry-Baker, E.Muller, P. Liska, N. Vlachopulos, M Gratzel, J.Am. Chem.Soc., 115, 6382 (1993)
    [6] M. K. Nazeeruddin, P. Pėchy,T. Renouard, S. M. Zakeerudin, R. Humphry-Baker, P.Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G. B. Deacon, C. A. Bignozzi, M. Gratzel, J. Am. Chem. Soc.,123, 1613 (2001)
    [7] N. Papageorgiou, W. Maier, M. Gratzel, Journal of the Electrochemical Society 144, 876 (1997)
    [8] P. Wang, S. M. Zakekruddin, P. Comte, I. Exnar, M. Gratzel, J. Am. Chem. Soc. Commun.125, 1166 (2003)
    [9] P. Wang, S. M. Zakekruddin, M. Gratzel, Journal of Fluorine Chemistry 125, 1241–1245 (2004)
    [10] H. Yang, C. Yu, Q. Song, Y. Xia , F. Li , Z. Chen, X. Li, T. Yi, C. Huang, Chem. Mater.18, 5173 (2006)
    [11] L. Han, N. Koide, Y. Chiba, T. Mitate, Appl. Phys. Lett. 84, 2433 (2004)
    [12] L. Han, N. Koide, Y. Chiba, A. Islam, T. Mitate. C. R, Chim. 9, 645 (2006)
    [13] Q. Wang, J. Moser, M. Gratzel, J. Phys. Chem. B 109, 14945-14953 (2005)
    [14] M. Toivola, J. Halme, K. Miettunen, K. Aitola, Peter D. Lund, Int. J. Energy Res. 33, 1145-1160 (2009)
    [15] S. Ito, N.C. Ha, G. Rothenberger, P. Liska, P. Comte, S. Zakeeruddin, P. Pechy, M. Khaja, M. Gratzel, Chem. Commun., 4004-4006 (2006)
    [16] P. Wang, S.M. Zakeeruddin, M. Gra‥tzel, J. Flu. Chem. 125, 8, 1241-1245 (2004)
    [17] P. Wang, S.M. Zakeeruddin, J.E. Moser, M.K. Nazeeruddin, T.Sekiguchi, M. Gra‥tzel, Nature Materials 2, 402 - 407 (2003).
    [18] P. Wang, S.M. Zakeeruddin, I. Exnar, M. Gra‥tzel, Chem. Commun., 2972-2973 (2002)
    [19] P. Wang, S.M. Zakeeruddin, P. Comte, I. Exnar, M. Gra‥tzel, J. Am. Chem. Soc., 125,1166–1167 (2003)
    [20] Hiroki Usui, Hiroshi Matsui, Nobuo Tanabe, Shozo Yanagida, Journal of Photochemistry and Photobiology A: Chemistry. 164, 97-101 (2004)
    [21] M. Berginc , M.Hočevar , U. Opara Krašovec , A. Hinsch , R. Sastrawan , M. Topič, Thin Solid Films. 516, 4645-4650 (2008)
    [22] S. Nakade, Y. Saito, W. Kubo, T. Kanzaki, T. Kitamura, Y. Wada, S. Yanagida , Electrochemistry Communications. 5, 804-808 (2003)
    [23] Chih-Ming Chen, Han-Sheng Shiu, Sheng-Jye Cherng, Tzu-Chien Wei, Journal of Power Sources.188, 319-322 (2009)
    [24] Jong Hyuk Park, Kyu Jin Choi, Sang Wook Kang ,Yong Soo Kang , Junkyung Kim, Sang-Soo Lee, Journal of Power Sources. 183, 812-816 (2008)
    [25] Jong Hak Kim, Moon-Sung Kang, Young Jin Kim, Jongok Won, Nam-Gyu Park and Yong Soo Kang, Chem. Commun., 1662-1663 (2004)
    [26] Jing Zhang, Hongwei Han, Sujuan Wu, Sheng Xu, Ying Yang, Conghua Zhou, Xingzhong Zhao, Solid State Ionics, Volume 178, Issues 29-30, December 2007, Pages 1595-1601
    [27] Kun-Mu Lee, Po-Yen Chen, Chuan-Pei Lee, Kuo-Chuan Ho, Journal of Power Sources. 190, 573-577 (2009)
    [28] Toshihito Kato, Takashi Kado, Shuhei Tanaka, Akio Okazaki, and Shuzi Hayase, J. Electrochem. Soc.153, A626-A630 (2006)
    [29] Yasuo CHIBA, Ashraful ISLAM, Yuki WATANABE, Ryoichi KOMIYA, Naoki KOIDE and Liyuan HAN, Japanese Journal of Applied Physics. 45, L638–L640 (2006)
    [30] P. Wang, S. M. Zakeeruddin, J.E. Moser, M. Gratzel. J. Phys. Chem. B 107, 13280 (2003)
    [31] Ryuji Kawano, Hiroshi Matsui, Chizuru Matsuyama, Akihiro Sato, Md. Abu Bin Hasan Susan, Nobuo Tanabe and Masayoshi Watanabe.Journal of Photochemistry and Photobiology A: Chemistry. 164, 87-92 (2004)
    [32] M. K. Nazeeruddin, C. Klein, P. Liska and M. Graetzel, Coord. Chem.Rev., 249, 1460 (2005)
    [33] A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, H. Pattersson. Chem. Rev. 110, 6595-6663 (2010)
    [34] Cao F, Oskam G, Meyer G, Searson P, J. Phys. Chem. B 100, 17021–17027 (1996)
    [35] Solbrand A et al., J. Phys. Chem. B 101, 2514–2518 (1997)
    [36] Solbrand A et al., J. Phys. Chem. B 103, 1078–1083 (1999)
    [37] Sommeling P et al., Sol. Energy Mater. Sol. Cells 62, 399–410 (2000)
    [38] R. Konenkamp, R. Henninger, P. Hoyer, J. Phys. Chem.,97,7328 (1993)
    [39] A. Kay, R. Humphry-Baker, M. Gratzel, J. Phys. Chem.,98, 952 (1994)
    [40] P. Bonhote, E. Gogniat, S. Tingry, C. Barbe, N. Vlachopoulos, F. Lenzmann, P. Comte, M. Gratzel, J. Phys. Chem. B. 102,1498 (1998)
    [41] M. Gratzel, Coord. Chem. Rev., 111, 167 (1991)
    [42] J. Desilvestro, M. Gratzel, L. Kaven, J. Moser, J. Am, Chem. Soc.
    107, 2988 (1985)
    [43] M. Gratzel. J. Photochemistry and Photobiology C: Photochemistry Reviews. 4, 145-153 (2003)
    [44] C. J. Barbe, F. Arendse, P. Comte, M.Jirousek, F. Lenzmann, V.
    Shkiover, M. Gratzel, J. Am. Ceram. Soc.,80, 3157 (1997)
    [45] M. Gratzel, M. Inorg. Chem 44, 6841-6851 (2005)
    [46] Wang, P. K., C. Humphry-Baker, R. Zakeeruddin, M. Gratzel. M. J. Am. Chem. Soc 127, 808-809 (2005)
    [47] Stergiopoulos, T. A., I. Kalbac, M. Lukes, I. Falaras, P.J. Mater.
    Process. Technol 161, 107-112 (2005)
    [48] Hara, K. S., H. Singh, L.P.Islam, A, Katoh, R. Yanagida, M. J.
    Photochem. Photobiol. A-Chem 145, 117-122 (2001)
    [49] J. Am. Chem. Soc. 115, 6382-6390 (1993)
    [50] J. Am. Chem. Soc. 123, 1613-1624 (2001)
    [51] J. Am. Chem. Soc. 127: 16835-16847 (2005)
    [52] Jihuai Wu, Zhang Lan, Sanchun Hao, Pure Appl. Chem. 80, 2241–2258 (2008)
    [53] Kiyoaki Imotoa, Kohshin Takahashi, Solar Energy Materials & Solar Cells 79, 459–469 (2003)
    [54] Takurou N. Murakami, Seigo Ito, Journal of The Electrochemical Society, 153, A2255-A2261 (2006)
    [55] A. Zaban et al., J. Phys. Chem. B 107, 6022-6025 (2003)
    [56] Zhong-Sheng Wang, Hiroshi Kawauchi, Takeo Kashima and Hironori Arakawa. Coordination Chemistry Reviews. 248, 1381-1389 (2004)
    [57] 簡國明,“奈米二氧化鈦專利地圖級分析”,國科會
    [58] Nelson, Jenny. The Physics of Solar Cells.. World Scientific Pub Co Inc. 2003
    [59] Aurelien Du Pasquier, Mattew Stewart, Timothy Spitler and Mike Coleman. Solar Energy Materials and Solar Cells. 93, 528-535 (2009)
    [60] S.Anandan , Current Applied Physics. 8, 99 (2008)
    [61] S.R. Scully et al., Synthetic Metals. 144, 291 (2004)
    [62] P. Wang et al, Journal of Fluorine Chemistry. 125, 1241 (2004)
    [63] Moon-Sung Kang, Kwang-Soon Ahn, Ji-Won Lee, Journal of Power Sources. 180, 896–901 (2008)
    [64] Seigo Ito, Ngoc-Le Cevey Ha, Guido Rothenberger, Paul Liska, Pascal Comte, Shaik M. Zakeeruddin, Peter Pechy, Mohammad Khaja Nazeeruddin and Michael Gratzel. Chem. Commun., 4004-4006 (2006)
    [65] Park H, Jun Y, Yun H-G, Lee S-Y, Kang MG. Journal of the Electrochemical Society. 155, F145-F149 (2008)
    [66] Gerrit Boschloo, Henrik Lindstrom, Eva Magnusson, Anna Holmberg and Anders Hagfeldt. Journal of Photochemistry and Photobiology A: Chemistry. 148, 11-15 (2002)
    [67] Durr M, Schmid A, Obermaier M, Rosselli S, Yasuda A, Nelles G. Nat Mater. 4, 607-11 (2005)
    [68] Takeshi Yamaguchi, Nobuyuki Tobe, Daisuke Matsumoto and Hironori Arakawa. Chem. Commun.4767-4769 (2007)
    [69] Takeshi Yamaguchi, Nobuyuki Tobe, Daisuke Matsumoto, Takuma Nagai and Hironori Arakawa. Solar Energy Materials and Solar Cells. 94, 812-816 (2010)
    [70] Tsutomu Miyasaka, Masashi Ikegami, and Yujiro Kijitori. J. Electrochem. Soc. 154, A455-A461 (2007)
    [71] Zhong-Sheng Wang, Hiroshi Kawauchi, Takeo Kashima and Hironori Arakawa. Coordination Chemistry Reviews. 248, 1381-1389 (2004)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE