簡易檢索 / 詳目顯示

研究生: 張博堯
Po-Yao Chang
論文名稱: Impurity-Induced Conductance Anomaly in Zigzag Carbon Nanotubes
指導教授: 林秀豪
Hsiu-Hau Lin
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 48
中文關鍵詞: 奈米碳管缺陷破損雜質傳導電導奇異有趣的
外文關鍵詞: Carbon nanotubes, defect, impurity, conductance, transport
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Impurities in carbon nanotubes give rise to rich physics due to the honeycomb lattice structure. We concentrate on the conductance through a point-like defect in metallic zigzag carbon nanotube via the Landauer-B‥uttiker approach. At low bias, the conductance is suppressed due to the presence of an additional impurity state existing only on one of the sublattices. In consequence, the suppression is exactly half of the perfect conductance without impurity. Furthermore, there exists a transport resonance at larger bias where the perfect conductance is recovered as if the impurity were absent. Implications of these conductance
    anomalies are elaborated and experimental detections in realistic carbon nanotubes are also discussed.


    1 Introduction 2 Impurity states in zigzag carbon nanotubes 2.1 Partial Fourier transformation application in zigzag carbon nanotubes 2.2 Generalized Bloch theory 2.3 Electronic property in zigzag nanotubes 2.4 Speci‾c cases in zigzag nanotubes 2.4.1 Single vacancy defect in zigzag nanotubes 2.4.2 Single point-like defect in semiconducting zigzag nan- otubes 3 Transport properties in metallic zigzag carbon nanotubes with single defect 3.1 Landauer-Buttiker formula 3.2 Friedel sum rule 3.3 Conductance for metallic zigzag nanotube with single defect in low energy regime 3.4 Conductance, Backward conductance and scattering phase analysis 4 Theoretical analysis of conductance and phase 4.1 Traditional scattering theory 4.1.1 S matrix and T matrix 4.1.2 Optical theorem 4.2 Tunneling regime for single dot problem 4.3 Scattering regime for single channel one dimensional case 5 Conclusion and outlook

    [1]Kai Nordlund and Pertti Hakonen, Nanotubes: Controlling conductance. Nature Materials 4, 514-515 (2005).
    [2] Ayako Hashimoto, et al., Direct evidence for atomic defects in graphene layers. Nature 430, 870-873 (2004).
    [3] W. Claussl, et al., Electron backscattering on single-wall carbon nanotubes observed by scanning tunneling microscopy. Europhysics Letters 47(5), 601 (1999).
    [4] Hajin Kim, et al., Direct Observation of Localized Defect States in Semiconductor Nanotube Junctions. Phys. Rev. Lett. 90, 216107(2003).
    [5] Masa Ishigami, et al., Identifying Defects in Nanoscale Materials. Phys. Rev. Lett. 93, 196803 (2004).
    [6] Brett R. Goldsmith, et al., Conductance-Controlled Point Functionalization of Single-Walled Carbon Nanotubes. Science 315, 77 (2007).
    [7] Brett R. Goldsmith, et al., Monitoring Single-Molecule Reactivity on a Carbon Nanotube. Nano Letters vol.8, no.1, 189-194 (2008).
    [8] Yuwei Fan, et al., Identifying and counting point defects in carbon nanotubes. Nature Materials 4, 906-911 (2005).
    [9] Vitor M. Pereira, et al., Disorder Induced Localized States in Graphene.
    Phys. Rev. Lett. 96, 036801 (2006).
    [10] Zhen Yao, et al., Carbon nanotube intramolecular junctions. Nature 402, 273-276 (1999).
    [11] L. Chico, et al., Pure Carbon Nanoscale Devices: Nanotube Heterojunctions. Phys. Rev. Lett. 76, 971-974 (1996).47
    [12] Marc Bockrath, et al., Resonant Electron Scattering by Defects in Single-Walled Carbon Nanotubes. Science 291, 12 (2001).
    [13] A. V. Krasheninnikov and F. Banhart, Engineering of nanostructured carbon materials with electron or ion beams. Nature Materials 6, 723-733 (2007).
    [14] H. J. Choi, et al., Defects, Quasibound States, and Quantum Conductance in Metallic Carbon Nanotubes. Phys. Rev. Lett. 84, 13 (2000).
    [15] M. Pustilnik and L. I. Glazman, Kondo ERect in Real Quantum Dots.Phys. Rev. Lett. 87, 216601 (2001).
    [16] Lieb,E. H., Two Theorems on Hubbard Model. Phys. Rev. Lett. 62,1201-1204 (1989).
    [17] P.O. Lehtinen, et al., Magnetic Properties and DiRusion of Adatoms on a Graphene Sheet. Phys. Rev. Lett. 91, 017202 (2003).
    [18] Oleg V. Yazyev and Lothar Helm, Defect-induced magnetism in graphene. Phys. Rev. B 75, 125408 (2007).
    [19] J.-H. Chen ,et al., Charged-impurity scattering in graphene. Nature Physics 4, 377-381 (2008). 48

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE