簡易檢索 / 詳目顯示

研究生: 游憲政
Yu, Hsien-Cheng
論文名稱: 含二胺基吡啶配基之低價數多鍺金屬與鉻多重鍵錯合物的合成及結構研究
Synthesis and Characterization of Low-Coordinate Multinuclear Germanium and Multiply-Bonded Dichromium Complexes Supported by Bulky Pyridyl Diamides
指導教授: 蔡易州
口試委員: 季昀
尤禎祥
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 111
中文關鍵詞: 多鍺金屬與鉻多重鍵錯合物
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗室利用Li2[N2Ndipp] (N2Ndipp = 4-methyl-2,6-(N-2,6-iPr2C6H3)2 pyridine)為配基合成出雙核鍺一價化合物K2Ge2[N2Ndipp]2 (2),將2與GeCl2‧dioxane和SnCl2反應,分別得到[GeCl]2Ge2[N2Ndipp]2 (3)與[SnCl]2Ge2[N2Ndipp]2 (4)。我們利用化合物2中具有高電荷密度的鍺(I)-鍺(I)金屬鍵與ZnI2反應,也成功合成出多金屬鏈化合物[ZnI]2Ge2[N2Ndipp]2(THF) (5),有趣的是,其中心金屬鍺(I)-鍺(I)距離也從2.5168(6)Å縮短為2.4060(6)Å。當我們將2與由正己烷配成1M的GeCl4反應,可以得到V字形角錐狀的化合物 [GeCl2][GeCl]2[N2Ndipp]2 (8),其GeCl4被還原成GeCl2並且以架橋的形式嵌入於鍺-鍺金屬鍵中間。另外,我們將3和4與KNCS反應,得到兩端鍺金屬上的Cl-離子由NCS-基團所取代的[GeNCS]2Ge2[N2Ndipp]2 (6)與[SnNCS]2Ge2[N2Ndipp]2 (7)。
    有趣的是,當我們將3分別溶於冰正己烷或冰四氫呋喃溶劑中,並加入由正己烷配成1M的GeCl4反應,前者得到主要產物為鍺五員環 [(GeCl2)(GeCl)4][N2Ndipp]2 (9),而後者其主要產物則為鍺四員環[GeCl]4[N2Ndipp]2 (10),主要是由於受到溶劑效應(solvent effect)的影響所致。
    我們將Li2[N2Ndipp]與CrCl2反應,合成出Cr2[N2Ndipp]2 (THF)2 (12)。本實驗室曾以Li2[N2Ndipp]與CrCl3反應後,再直接以KC8進行還原反應,可以分離出雙鉻(I)五重鍵金屬錯合物[(Et2O)KCr(N2Ndipp)]2 (11),我們也能將12與KC8進行還原反應,發現可以得到高產率的11。當我們將11與CaI2反應,令人驚奇的是,成功合成出新穎的雙鉻(I)五重鍵Cr2Ca [N2Ndipp]2(THF)2 (15),其鉻(I)-鉻(I)間距離為1.7356(7) Å,較11(1.7443(10) Å)縮短了約0.01 Å。另外,我們將11與AlMe3反應,得到三個鉻金屬原子以直線排列且不對稱的[μ-CH3]2Cr3[N2Ndipp]2 (THF) (16),其鉻(II)-鉻(II)間距離分別為1.8989(6) Å與2.6283(6) Å。
    其他嘗試中,我們首先利用Li[HC(NDipp)2] (NDipp = N-2,6- iPr2C6H3)配基與CrCl2得到Cr[HC(NDipp)2]2,接著加入GeCl2‧dioxane進行反應,成功合成出[(GeCl)(μ-Cl)Cr][HC(NDipp)2]2 (17)。之後,將17與還原劑LiAlH4進行反應,成功合成出具有鉻-鍺金屬鍵且新奇的 [(GeCl)(CrH)][HC(NDipp)2]2 (18),其鉻(II)-鍺(II)鍵長為2.5610(16) Å。
    以上所有合成出來的產物,皆已經過核磁共振光譜和元素分析鑑定。透過單晶X-ray繞射解析,我們也清楚了解其分子結構。


    The low-valent and low-coordinate digermanium complex, K2Ge2[N2Ndipp]2 (2), was synthesize by the sterically hindered three-nitrogen donor ligand, Li2[N2Ndipp] (N2Ndipp = 4-methyl-2,6-(N-2,6-iPr2C6H3)2 pyridine). The bond length of Ge(I)-Ge(I) in 2 is 2.5168(6) Å. Treatment of 2 with GeCl2‧dioxane and SnCl2 gives two linear tetranuclear mixed-valence complexes, [MCl]2Ge2[N2Ndipp]2 (3: M = Ge; 4: M = Sn), respectively. These complexes 2, 3, and 4 are starting materials to synthesize the following low-coordinate multinuclear complexes.
    Treatment of 2 with ZnI2 also produces a tetranuclear mixed-valence Zn(II)-Ge(I)-Ge(I)-Zn(II) complex, [ZnI]2Ge2[N2Ndipp]2(THF) (5), where the internal Ge(I)-Ge(I) bond length is significantly shortened to 2.4060(6)Å. Reaction of 2 with 1M stock solution of GeCl4 in hexane results in the formation of a inverted V-shape pyramidal trinuclear mixed-valence Ge(III)-Ge(II)-Ge(III) complex, [GeCl2][GeCl]2[N2Ndipp]2 (8), where GeCl4 is reduced to GeCl2 and bridges between two Ge(III) atoms.
    Similar to molecular wire, reaction of 3 or 4 with KNCS undergoes SN2 reaction, giving tetranuclear complexes, [MNCS]2Ge2[N2Ndipp]2 (6: M = Ge; 7: M = Sn). Interestingly, due to the solvent effect, reaction of 3 and 1 equivalent of GeCl4 in n-hexane gave rise to the formation of cyclic pentanuclear germane, [(GeCl2)(GeCl)4][N2Ndipp]2 (9) as the major product. On the contrary, if this reaction is carried out in THF, cyclic tetranuclear germane, [GeCl]4[N2Ndipp]2 (10) is the major product instead.
    Besides, treatment of Li2[N2Ndipp] with CrCl2 gives the complex Cr2[N2Ndipp]2(THF)2 (12). Upon reduction of 12 with KC8 leads to a quintuply-bonded complex, [(Et2O)KCr(N2Ndipp)]2 (11), which was already reported by our lab. Unfortunately, reaction of 11 with CaI2 failed to give a tetranuclear complex; instead it formed an amazing quintuply-bonded complex, Cr2Ca [N2Ndipp]2(THF)2 (15), where the Cr(I)-Cr(I) bond length is 1.7356(7) Å, shorter than 11, in which the Cr(I)-Cr(I) bond length is 1.7443(10) Å. Moreover, reaction of 11 with AlMe3 produces an asymmetric trichromium complex, [μ-CH3]2Cr3 [N2Ndipp]2(THF) (16). The Cr-Cr bond lengths are 1.8989(6) Å and 2.6283(6) Å, respectively.
    In addition, the reaction of amidinate ligand, Li[HC(NDipp)2] (NDipp = N-2,6-iPr2C6H3) and CrCl2 produces the Cr[HC(NDipp)2]2. Treatment of the mixture of Cr[HC(NDipp)2]2 and GeCl2‧dioxane gives [(GeCl)(μ-Cl)Cr][HC(NDipp)2]2 (17). There is one chloride that bridges between germanium and chromium atoms. The addition of LiAlH4 to 17 leads to the isolation of heterodinuclear complex, [(GeCl)(CrH)][HC(NDipp)2]2 (18). The distance of Ge-Cr is 2.5610(16) Å and is assigned a single bond.
    All the synthesized products have been characterized by NMR spectroscopy and elemental analysis, and their molecular structures have been determined by single crystal X-ray crystallography.

    摘要………………………………………………………………………I Abstract………………………………………………………………III 謝誌………………………………………………………………………V 目錄………………………………………………………………………IX 圖目錄……………………………………………………………………XII 表目錄……………………………………………………………………XIV 第一章 緒論…………………………………………………………….……...1 1-1. 低價數、低配位數金屬錯合物………………………….…1 1-2. 金屬-金屬鍵…………………………………………….……1 1-2-1. 主族元素的多重鍵.............................. 2 1-2-2. 重主族元素的特性...............................4 1-2-3. 重主族元素的鍵結與反應性………………………….......5 1-2-4. 過渡金屬:從四重鍵到五重鍵……………..……………..16 第二章 低價數鍺多金屬錯合物合成之結構探討…………………………..20 2-1. 前言..........................................20 2-2. 錯合物[ZnI]2Ge2[4-methyl-2,6-(NDipp)2pyrdine]2(THF) (5)的合成與鑑定.........................................24 2-2-1. 前言………………………………………………………..24 2-2-2. [ZnI]2Ge2[N2Ndipp]2(THF) (5)的合成..........25 2-3. 錯合物[GeNCS]2Ge2[4-methyl-2,6-(NDipp)2pyrdine]2 (6)的合成與鑑定….……………………………………………………………29 2-3-1. 前言………………………………………………………..29 2-3-2. [GeNCS]2Ge2[N2Ndipp]2 (6)的合成.............30 2-4. 錯合物[SnNCS]2Ge2[4-methyl-2,6-(NDipp)2pyrdine]2 (7)的合成與鑑定…………………………………………………………………34 2-5. 錯合物[(GeCl2)(GeCl)2][4-methyl-2,6-(NDipp)2pyrdine]2 (8)的合成與鑑定………………………………………………………37 2-6. 錯合物[(GeCl2)(GeCl)4][4-methyl-2,6-(NDipp)2pyrdine]2 (9)及[GeCl]4[4-methyl-2,6-(NDipp)2pyrdine]2 (10)的合成與鑑定……40 2-6-1. 前言………………………………………………………...40 2-6-2. 溶劑效應(solvent effect): 化合物9與化合物10的合成….41 2-6-3. [(GeCl2)(GeCl)4][N2Ndipp]2 (9)的晶體結構與鑑定……44 2-6-4. [GeCl]4[N2Ndipp]2 (10)的晶體結構與鑑定……………….46 2-7. 結果與討論……………....................48 第三章 低價數鉻金屬多重鍵錯合物合成之結構討……………52 3-1. 前言………………………………………………52 3-2. 錯合物Cr2[4-methyl-2,6-(NDipp)2pyrdine]2(THF)2 (12)的合成與鑑定……................................53 3-2-1. 取代基效應(substitution effect).............57 3-3. 錯合物Cr2Ca[4-methyl-2,6-(NDipp)2pyrdine]2(THF)2 (15)的合成與鑑定……….….................................59 3-3-1. 前言………………………………………………………59 3-3-2. Cr2Ca [N2Ndipp]2(THF)2 (15)的合成……………………...60 3-4. 錯合物[μ-CH3]2Cr3[4-methyl-2,6-(NDipp)2pyrdine]2(THF) (16)的合成與鑑定…………………………………………………63 3-4-1. 前言………………………………………………………63 3-4-2. [μ-CH3]2Cr3[N2Ndipp]2(THF) (15)的合成………64 3-5.其他嘗試:鉻-鍺異核金屬錯合物合成之結構探討…………67 3-5-1. 前言……………………………………………………….67 3-5-2. 錯合物(GeCl)(μ-Cl)Cr[HC(NDipp)2]2 (17)的合成 與鑑定……………………………………………………………..69 3-5-3. 錯合物(GeCl)(CrH)[HC(NDipp)2]2 (18)的合成與 鑑定……………………………………………………………..…71 第四章 實驗步驟與晶體結構資料…………………………………….…...75 4-1. 一般操作……………………………………………………………75 4-2. 實驗使用儀器………………………………………………………75 4-3. 實驗溶劑與藥品……………………………………………………77 4-4. 實驗步驟……………………………………………………………78 4-4-1. (ZnI)2Ge2[4-methyl-2,6-(NDipp)2pyrdine]2(THF) (5)的合成…………………………………………………..………78 4-4-2. (GeNCS)2Ge2[4-methyl-2,6-(NDipp)2pyrdine]2 (6)的合 成…………………………………………………..………79 4-4-3. (SnNCS)2Ge2[4-methyl-2,6-(NDipp)2pyrdine]2 (7)的合 成…………………………………………………..………80 4-4-4. (GeCl2)(GeCl)2[4-methyl-2,6-(NDipp)2pyrdine]2 (8)的合 成…………………………………………………..………81 4-4-5. [(GeCl2)(GeCl)4][4-methyl-2,6-(NDipp)2pyrdine]2 (9)與 [GeCl]4[4-methyl-2,6-(NDipp)2pyrdine]2 (10)的合成…82 4-4-6. Cr2[4-methyl-2,6-(NDipp)2pyrdine]2(THF)2 (12)的合成..84 4-4-7. Cr2Ca[4-methyl-2,6-(NDipp)2pyrdine]2(THF)2 (15)的合 成…………………………………………………..………84 4-4-8. (μ-CH3)2Cr3[4-methyl-2,6-(NDipp)2pyrdine]2(THF) (16)的合成…………………………………………………..……85 4-4-9. (GeCl)(μ-Cl)Cr[HC(N-2,6-iPr2C6H3)2]2 (17)的合成……..86 4-4-10.(GeCl)(CrH)[HC(N-2,6-iPr2C6H3)2]2 (18)的合成..……....87 4-5. 其他嘗試…………………………………………………………87 4-5-1. K2Ge2[N2Ndipp]2(2)其他反應…………………….....87 與金屬鹵化物的反應……………………...............87  與ZnR2及AlR3的反應…………………................89  與烯類的反應…………………......................90  與小分子(S8、Te及P4)的反應......................90  與硼化合物的反應................................91 與疊氮化合物的反應................................92 4-5-2. 新穎雙鉻五重鍵的反應………………................93 4-6. 晶體結構資料表……………………………………………………95 4-6-1. [ZnI]2Ge2[N2Ndipp]2(THF) (5)的晶體資料…………….95 4-6-2. [GeNCS]2Ge2[N2Ndipp]2 (6)的晶體資料.…………………96 4-6-3. [SnNCS]2Ge2[N2Ndipp]2 (7)的晶體資料…………….....97 4-6-4. [GeCl2][GeCl]2[N2Ndipp]2 (8)的晶體資料………………98 4-6-5. [(GeCl2)(GeCl)4][N2Ndipp]2 (9)的晶體資料…………99 4-6-6. [GeCl]4[N2Ndipp]2 (10)的晶體資料.……………………100 4-6-7. Cr2[N2Ndipp]2(THF)2 (12)的晶體資料…………….……101 4-6-8. Cr2Ca[N2Ndipp]2(THF)2 (15)的晶體資料……………….102 4-6-9. [μ-CH3]2Cr3[N2Ndipp]2(THF) (16)的晶體資料……….103 4-6-10. (GeCl)(μ-Cl)Cr[HC(NDipp)2]2 (17)的晶體資料………104 4-6-11. (GeCl)(CrH)[HC(NDipp)2]2 (18)的晶體資料………….105 4-7. 參考文獻……………………………………………………..…...106

    (1) (a) Cummins, C. C. Prog. Inorg. Chem. 1998, 47, 685. (b) Alvarez, S. Coord. Chem. Rev. 1999, 193-195, 13. (c) Cummins, C. C. Chem. Commun. 1998, 1777.
    (2) Mackay, B. A.; Fryzuk, M. D. Chem. Rev. 2004, 104, 385.
    (3) (a) Laplaza, C. E.; Cummins, C. C. Science 1995, 268, 861. (b) Laplaza, C. E.; Johnson, M. J. A.; Peters, J. C.; Odom, A. L.; Kim, E.; Cummins, C. C.; George, G. N.; Pickering, I. J. J. Am. Chem. Soc. 1996, 118, 8623.
    (4) (a) Kornath, A., J. Chem. Phys. 2002, 116, 3323. (b) L. G. M. Pettersson, Chem. Phys. 1993, 170, 149. (c) Bock, H., Inorg. Chem. 1984, 23, 4365. (d) Figueroa, J. S.; Cummins, C. C. J. Am. Chem. Soc. 2003, 125, 4020.
    (5) (a) Figueroa, J. S., Cummins, C. C. Angew. Chem., Int. Ed. 2004, 43, 984. (b) Piro, N. A.; Figueroa, J. S.; Mckellar, J. T.; Cummins, C. C. Science, 2006, 313, 1276. (c) Piro, N. A.; Cummins, C. C. J. Am. Chem. Soc., 2008, 130, 9524. (d) Cossairt, B. M.; Piro, N. A.; Cummins, C. C. Chem. Rev. 2010, 110, 4164.
    (6) (a) Shaik, S. J. Comput. Chem. 2007, 28, 51. (b) Lewis, G. N. J. Am. Chem. Soc. 1916, 38, 762.
    (7) Kauffman, G. B. Coordination Chemistry Reviews 1973, 9, 339.; 1974, 12, 105.; 1975, 15, 1.
    (8) (a) Cotton, F. A. Chem.Soc. Rev. 1975, 4, 27. (b) Dedieu, A.; Albright, T. A.; Hoffmann, R. J. Am. Chem. Soc. 1979, 101, 3141-3151.
    (9) (a) Su, J.; Li, X.-W.; Crittendon, R. C.; Robinson, G. H. J. Am.Chem. Soc. 1997, 119, 5471. (b) Xie, Y.; Grev, R. S.; Gu, J.; Schaefer, H. F.; Schleyer, P. v. R.; Su, J.; Li, X.-W.; Robinson, G. R. J. Am. Chem. Soc. 1998, 120, 5471. (c) Klinkhammer, K. W. Angew. Chem., Int. Ed. Engl. 1997, 36, 2320. For more recent discussions, see also: (d) Downs, A. J. Coord. Chem. Rev. 1999, 189, 59. (e) Robinson, G. H. Acc. Chem. Res. 1999, 22, 773.
    (10) (a) Cotton, F. A.; Cowley, A. H.; Feng, X. J. Am. Chem. Soc. 1998, 120, 1795. (b) Bytheway, I.; Lin, Z. J. Am. Chem. Soc. 1998, 120, 12133. (c) Cotton, F. A.; Feng, X. Organometallics 1998, 17, 128.
    (11) Other approaches to bonding have also been proposed, see: Epiotis, N. D. Deciphering the Chemical Code; VCH: Weinheim, 1996.
    (12) (a) Fjeldberg, T.; Haaland, A.; Lappert, M. F.; Schilling, B. E. R.; Seip, R.; Thorne, A. J. J. Chem. Soc., Chem Commun. 1982, 1407. (b) Goldberg, D. E.; Hitchcock, P. B.; Lappert, M. F.; Thomas, K. M.; Fjelberg, T.; Haaland, A.; Schilling, B. E. R. J. Chem. Soc., Dalton Trans. 1986, 2387.
    (13) Jacobsen, H.; Zeigler, T. J. Am. Chem. Soc. 1994, 116, 3667.
    (14) (a) Apeloig, Y. In The Chemistry of Organosilicon Compounds; Patai, S., Rappoport, Z., Eds.; Wiley, New York, 1989; p 57. (b) Grev, R. S. Adv. Organomet. Chem. 1991, 33, 125.
    (15) Carter, E. A.; Goddard, W. A. J. Phys. Chem. 1986, 90, 998.
    (16) (a) Trinquier, G.; Malrieu, J.-P. J. Am. Chem. Soc. 1987, 109, 5303. (b) Trinquier, G.; Malrieu, J.-P. J. Am. Chem. Soc. 1989, 111, 5916. (c) Trinquier, G.; Malrieu, J.-P. In The chemistry of functional groups, Suppl. A: The chemistry of double bonded functional groups; Patai, S., Ed.; Wiley: Chichester, 1989; Vol. 2, Part 1, p 1. (d) Trinquier, G.; Malrieu, J.-P.; Rivie`re, P. J. Am. Chem. Soc. 1982, 104, 4529.
    (17) Driess, M.; Gru¨ tzmacher, H. Angew. Chem., Int. Ed. Engl. 1996, 35, 828.
    (18) Philip P. P. Chem. Rev. 1999, 99, 3463-3503.
    (19) (a) Mizuhata, Y.; Sasamori, T.; Tokitoh, N. Chem. Rev. 2009, 109, 3479-3511. (b) Gaspar, P. P.; West, R.; Macmillan Publishers Limited. All rights reserved: 1998, p 2463-2568.
    (20) Stephan, D. W. Dalton Trans. 2009, 3129-3136.
    (21) (a) Power, P. P. Chem. Rev. 2003, 103, 739-809. (b) Hicks, R. G. Org. Mol. Biochem. 2007, 5, 1321-1338. (c) Lee, V.; Ya; Nakamoto, M.; Sekiguchi, A. Chem. Lett. .2008, 37, 128-133.
    (22) (a) Breher, F. Coord. Chem. Rev. 2007, 215, 1007-1043. (b) Dasent, W. E.; Macmillan Publishers Limited. All rights reserved: 1965. (c) Taylor, M.J; Macmillan Publishers Limited. All rights reserved: 1975.
    (23) Pearson, R. G. J. Am. Chem. Soc. 1988, 110, 2092-2097.
    (24) Power, P. P. Nature 2010, 463, 171-177.
    (25) (a) Kutzelnigg, W. Angew. Chem. Int. Edn Engl. 1984, 23, 272–295. (b) Jacobsen, H.; Ziegler, T. J. Am. Chem. Soc. 1994, 116, 3667–3679.
    (26) (a) Davidson, P. J.; Lappert, M. F. Chem. Commun. 1973, 317. (b) Goldberg, D. E.; Harris, D. H.; Lappert, M. F.; Thomas, K. M. Chem. Commun. 1976, 261-262.
    (27) Wells, A. F.; Macmillan Publishers Limited. All rights reserved: 1986.
    (28) Sturmann, M.; Weidenbruch, M.; Klinkhammer, K. W.; Lissner, F.; Marsmann, H. Organometallics 1998, 17, 4425-4428.
    (29) West, R.; Fink, M. J.; Michl, J. Science. 1981, 214, 1343-1344.
    (30) (a) Sekiguchi, A.; Kingo, R.; Ichinohe, M. Science. 2004, 305, 1755-1757. (b) Stender, M.; Phillips, A. D.; Wright, R. J.; Power, P. P. Angew. Chem., Int. Ed. Engl. 2002, 41, 1785-1787.
    (31) (a) Phillips, A. D.; Wright, R. J.; Olmstead, M. M.; Power, P. P. J. Am. Chem. Soc. 2002, 124, 5930–5931. (b) Pu, L.; Twamley, B.; Power, P. P. J. Am. Chem. Soc. 2000, 122, 3524–3525.
    (32) Spikes, G. H.; Fettinger, J. C.; Power, P. P. J. Am. Chem. Soc. 2005, 127, 12232– 12233.
    (33) Peng, Y. Chem. Commun. 2008, 6042-6044.
    (34) Peng, Y.; Ellis, B. D.; Wang, X.; Philip, P. P. J. Am. Chem. Soc. 2008, 130, 12268–12269.
    (35) Zhao, J.; Goldman, A. S.; Hartwig, J. S. Science. 2005, 307, 1080.
    (36) Peng, Y.; Ellis, B. D.; Wang, X.; Fettibger, J. C.; Philip, P. P. Science. 2009, 48, 1668-1670.
    (37) Seyferth, D. Organometallics 2001, 20, 2–6.
    (38) (a) Grutzmacher, H.; Breher, F. Angew. Chem., Int. Ed. 2002, 41, 4006. (b) Borden, W. T. Diradicals; Wiley-Interscience: New York, 1998; p 708. (c) Jain, R.; Sponsler, M. B.; Coms, F. D.; Dougherty, D. A. J. Am. Chem. Soc. 1988, 110, 1356. (d) Nguyen, K. A.; Gordon, M. C.; Boatz, J. A. J. Am. Chem. Soc. 1994, 116, 9241.
    (39) (a) Hicks, R. G. Org. Mol. Biochem. 2007, 5, 1321–1338. (b) Chivers, T. A Guide to Chalcogen-Nitrogen Chemistry. 2005.
    (40) Niecke, E.; Fuchs, A.; Baumeister, F.; Nieger, M.; Schoeller, W. W. Angew. Chem. Int. Edn Engl. 1995, 34, 555–557.
    (41) Scheschkewitz, D. et al. Science 2002, 295, 1880–1881.
    (42) Sita, L. R. Adv. Organomet. Chem. 1995, 38, 189–243.
    (43) (a) Cui, C.; Brynda, M. A.; Olmstead, M. M.; Power, P. P. J. Am. Chem. Soc. 2004, 126, 6510–6511. (b) Wang, X.; Peng, Y.; Olmstead, M. M.; Fettibger, J. C.; Philip, P. P. J. Am. Chem. Soc. 2009, 131, 14164–14165.
    (44) Dai, X.; Kapoor, P.; Warren, T. H. J. Am. Chem. Soc. 2004, 126, 4798–4799.
    (45) Philip, P. P. Organometallics 2007, 26, 4362-4372.
    (46) Philip, P. P. Acc. Chem. Res. 2011, 44, 627–637.
    (47) (a) Cotton, F. A.; Curtis, N. F.; Harris, C. B.; Johnson, B. F. G.; Lippard, S. J.; Mague, J. T.; Robinson, W. R.; Wood, S. J. Science, 1964, 145, 1305. (b) Cotton, F. A.; Harris, C. B. Inorg. Chem. 1965, 4, 334.
    (48) Cotton, R. A.; Murillo, C. A.; Walton, R. A., Multiple Bonds Between Metal Atoms, 3rd ed., Springer, New York, 1999.
    (49) (a) Cotton, F. A. Q. Rev. Chem. Soc. 1966, 20, 397. (b) Cotton, F. A. J. Chem. Soc., 1983, 60, 173.
    (50) (a) Roos, B. O.; Borin, A. C.; Gagliardi, L. Angew. Chem. Int. Ed. 2007, 46, 1469. (b) Kuendig, E. P.; Moskovits, M.; Ozin, G. A. Nature (London) 1975, 254, 503. (c) Klotzbuecher, W.; Ozin, G. A. Inorg. Chem. 1977, 16, 984. (d) Gupta, S. K.; Atkins, R. M.; Gingerich, K. A. Inorg. Chem. 1978, 17, 3211. (e) Efremov, Y. M.; Samoilova, A. N.; Kozhukhovskii, V. B.; Gurvich, L. V. J. Mol. Spectrosc. 1978, 73, 430. (f) W. Weltner, J.; Zee, R. J. V. Annu. Rev. Phys. Chem. 1984, 35, 291. (g) Morse, M. D. Chemical Reviews (Washington, DC, United States) 1986, 86, 1049. (h) Xiao, Z. L.; Hauge, R. H.; Margrave, J. L. J. Phys. Chem. B 1992, 96, 636. (i) Casey, S. M.; Villalta, P. W.; Bengali, A. A.; Cheng, C. L.; Dick, J. P.; Fenn, P. T.; Leopold, D. G. J. Am. Chem. Soc. 1991, 113, 6688. (j) Casey, S. M.; Leopold, D. G. J. Phys. Chem. B 1993, 97, 816. (k) Casey, S. M.; Leopold, D. G. Chem. Phys. Lett. 1993, 201, 205. (l) Chisholm, M. H. Chem. Rev. 2005, 105, 2949. (m) Kant, A.; Strauss, B. H. J. Chem. Phys. 1966, 45, 3161. (n) Kraus, D.; Lorenz, M.; Bondybey, V. E. PhysChemComm 2001, 4, 44. (o) Xu, B.; Li, Q.-S.; Xie, Y.; King, R. B.; Schaefer III, H. F. J. Chem. Theory Comput. 2010, 6, 735.
    (51) Dedieu, A.; Albright, T. A.; Hoffmann, R. J. Am. Chem. Soc. 1979, 101, 3141.
    (52) (a) Wolf, R.; Ni, C.; Nguyen, T.; Brynda, M.; Long, G. J.; Sutton, A. D.; Fischer, R. C.; Fettinger, J. C.; Hellman, M.; Pu, L.; Power, P. P. Inorg. Chem. 2007, 46, 11277. (b) Weinhold, F.; Landis, C. R. Valency and Bonding: A Natural Bond Orbital Donor-Acceptor Perspective; Cambridge University Press: UK/New York, 2005. (c) Gagliardi, L.; Roos, B. O. Nature (London) 2005, 433, 848. (d) Landis, C. R.; Weinhold, F. J. Am. Chem. Soc. 2006, 128, 7335. (e) Weinhold, F.; Landis, C. R. Science 2007, 316, 61. (f) Merino, G.; Donald, K. J.; D'Acchioli, J. S.; Hoffmann, R. J. Am. Chem. Soc. 2007, 129, 15295.
    (53) Nguyen, T.; Sutton, A. D.; Brynda, M.; Fettinger, J. C.; Long, G. J.; Power, P. P. Science, 2005, 310, 844.
    (54) (a) Frenking, G. Science 2005, 310, 796. (b) Brynda, M.; Gagliardi, L.; Widmark, P.-O.; Power, P. P.; Roos, B. O. A Angew. Chem. Int. Ed. 2006, 45, 3804. (c) Radius, U.; Breher, F. Angew. Chem. Int. Ed. 2006, 45, 3006.
    (55) Hsu, C.-W.; Yu, J.-S. K.; Yen, C.-H.; Lee, G.-H.; Wang, Y.; Tsai, Y.-C. Angew. Chem. Int. Ed. 2008, 47, 9933-9936.
    (56) Huang, Y.-L.; Lu, D.-Y.; Yu, H.-C.; Yu, J.-S. K.; Hsu, C.-W.; Kuo, T.-S.; Lee, G.-H.; Wang, Y.; Tsai, Y.-C. Angew. Chem. Int. Ed. 2012, 51.
    (57) Noor, A.; Wagner, F. R.; Kempe, R. Angew. Chem. Int. Ed. 2008, 47, 7246.
    (58) Cotton, F. A.; Murillo, C. A.; Walton, R. A. Multiple Bonds Between Metal Atoms, Third Edition, Springer, New York, 2005.
    (59) Cotton, F. A.; Daniels, L. M.; Murillo, C. A.; Pascual, I.; Zhou, H.-C. J. Am.Chem. Soc. 1999, 121, 6856.
    (60) Schafer, H.; Saak, W.; Weidenbrunch, M. Organometallics 1999, 18, 3159-3163.
    (61) Green, S. P.; Jones, C.; Junk, P. C.; Lippert, K.-A.; Stasch, A. Chem. Commun. 2006, 3978-3980.
    (62) 楊凡陞, 國立清華大學化學研究所博士論文, 2010.
    (63) Nanjo, M.; Oda, T.; Sato, T.; Mochida, K. J. Organomet. Chem. 2005, 690, 2952–2955.
    (64) (a)Yeh, C.-Y.; Wang, C .-C.; Chen, C .-H.; Peng, S.-M. in Nano Redox Sites: Nano-Space Control and its Applications (Ed.: T. Hirao), Springer,Berlin, 2006, chap . 5, 85-117. (b)Tsai, T.-W.; Huang, Q.-R.; Peng, S.-M.; Jin, B.-Y. J. Phys. Chem. C 2010, 114, 3641–3644.
    (65) Hihara, G. et al. J. Organomet. Chem. 2000, 276–285
    (66) Weidenbruch, M. Organometallics 2003, 22, 4348-4360.
    (67) (a) Neumann, W. P.; Ku¨hlein, K. Tetrahedron Lett. 1963, 4, 1541. (b) Neumann, W. P.; Ku¨hlein, K. Liebigs Ann. Chem. 1965, 683, 1. (c) Ross, L.; Dra¨ger, M. J. Organomet. Chem. 1980, 199, 195. (d) Mallela, S. P.; Geanangel, R. A. Inorg. Chem. 1994, 33, 1115-1120. (e) Mochida, K.; Kanno, N.; Kato, R.; Kotani, M.; Yamauchi, S.; Wakasa, M.; Hayashi, H. J. Organomet. Chem. 1991, 415, 191–201.
    (68) Tian, X.; Pape, T.; Mitzel, N. W. Heteroatom Chemistry, 2005, 16, 361-363.
    (69) 王柏揚, 國立清華大學化學研究所博士論文, 2007.
    (70) (a) Balazs, G.; Cloke, F. G. N.; Gagliardi, L.; Green, J. C.; Harrison, A.; Hitchcock, P. B.; Shahi, A. R. M.; Summerscales, O. T. Organometallics, 2008, 27, 2013–2020. (b) Berry, J. F.; Lu, T.;Murillo, C. A.; Roberts, K. B.; Wang, X.; Cotton, F. A. J. A. Chem. Soc. 2004, 7082-7096.
    (71) (a) Cotton, F. A.; Murillo, C. A.; Pascual, I. Inorg. Chem. 1999, 38, 2182. (b) Cotton, F. A.; Daniels, L. M.; Murillo, C. A.; Schooler, P. J. Chem. Soc., Dalton Trans. 2000, 2007. (c) Hao, S.; Gambarotta, S.; Bensimon, C.; Edema, J. J. H. Inorg. Chim. Acta 1993, 213, 65. (d) Cotton, F. A.; Daniels, L. M.; Murillo, C. A.; Schooler, P. J. Chem. Soc., Dalton Trans. 2000, 2001. (e) Carlton-Day, K. M.; Eglin, J. L.; Lin, C.; Smith, L. T.; Staples, R. J.; Wipf, D. O. Polyhedron 1999, 18, 817. (f) Dionne, M.; Hao, S.; Gambarotta, S. Can. J. Chem. 1995, 73, 1126. (g) Cotton, F. A.; Timmons, D. J. Polyhedron 1998, 17, 179. (h) Mashima, K.; Tanaka, M.; Tani, K.; Nakamura, A.; Tadeka, S.; Mori, W.; Yamaguchi, K. J. Am. Chem. Soc. 1997, 119, 4307.
    (72) Noor, A.; Glatz, G.; Müller, R.; Kaupp, M.; Demeshko, S.; Kempe, R. Nature 2009, 1, 322-325.
    (73) Lappert, M. F.; Miles, S. J.; Power, P. P.; Carty, A. J.; Taylor, N. J. J.C.S. Chem. Comm., 1977, 402, 458-459.
    (74) Pu, L.; Twamley, B.; Haubrich, S. T.; Olmstead, M. M.; Mork, B. V.; Simons, R. S.; Power, P. P. J. Am. Chem. Soc. 2000, 122, 650-656
    (75) Jones, C.; Rose, R. P.; Stasch, A. Dalton Trans. 2008, 2871-2878.
    (76) (a) Cotton, F. A.; Ralvello, L. R.; Han, S.; Wang, W. Inorg. Chem. 1983, 22, 4106. (b) Cotton, F. A.; Daniels, L. M.; Murillo, C. A.; Pascual, I.; Zhou, H.-C. J. AM. Chem. Soc. 1999, 121, 6856. (c) Majumdar, M.; Patra, S. K.; Kannan, M.; Dunbar, K. R.; Bera, J. K. Inorg. Chem. 2008, 47, 2212.
    (77) (a) Roberts, R. M. J. Org. Chem. 1949, 14, 277. (b) Cole, M. L.; Davies, A. J.; Jones, C.; Junk, P. C. J. Organomet. Chem. 2004, 689, 3093.
    (78) Fujie, Y.; Hanaki, N. Jpn. Kokai Tokkyo Koho 2004, 17.
    (79) 呂端晏, 國立清華大學化學研究所碩士論文, 2005.
    (80) Podall, H.; Foster, W. E.; Giraitis, A. P. J. Org. Chem. 1958, 23, 82.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE