簡易檢索 / 詳目顯示

研究生: 許家旺
Chia-Wang Hsu
論文名稱: In-situ電漿表面處理對原子層化學氣相沈積Al2O3、HfO2高介電薄膜應用在奈米尺度世代DRAM影響之研究
指導教授: 吳泰伯
Tai-Bor Wu
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 135
中文關鍵詞: 電漿處理高介電薄膜原子層化學氣相沈積
外文關鍵詞: DRAM, Al2O3, HfO2
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗以原子層化學氣相沈積法 (Atomic layer chemical vapor deposition, 簡稱ALCVD) 鍍製Al2O3 和HfO2高介電薄膜,因為ALCVD具有極佳的厚度控制能力、均勻覆蓋能力以及低鍍膜溫度等優點,為許多鍍製超薄薄膜方法中最具吸引力的。我們在鍍製Al2O3 和HfO2薄膜時是採用TMA(Trimethylaluminum) 作為Al的先趨物,TEMAH (Tetrakis (ethylmethylamido) Hafnium) 作為Hf的先趨物,兩者皆以H2O作為氧化劑。
    本實驗使用MIM(Metal-Insulator-Metal)電容結構,以避免MIS(Metal-Insulator-Silicon)結構於介面形成SiO2而降低整個電容值的問題。主要使用的底電極為Pt、PtOx、TiN三種基板,採用Au、Ti-Au為上電極。本實驗研究重點在於In-situ電漿處理底電極表面對後續ALCVD 之Al2O3、HfO2薄膜成長的影響。我們改變電漿成分以探討其對底電極表面形貌和MIM電容電性上的影響。利用TEM和XPS分別觀察薄膜與底電極介面結構及鍵結情形。另外,我們也做了不同熱處理條件,探討熱處理溫度和氣氛對Al2O3 和HfO2薄膜電性上的影響。
    本實驗成功利用In-situ電漿表面處理,增加底電極表面之-OH鍵,成長均勻的Al2O3 和HfO2於Pt、PtOx底電極上。當Al2O3 和HfO2薄膜厚度為7.3nm,漏電流可控制在1V工作電壓下小於1x10-7 ~1x10-8 A/cm2以下。


    目錄 第一章 緒論----------------------------------------------1 1-1 研究背景---------------------------------------------1 •DRAM產業市埸分析-------------------------------------2 1-2 研究動機---------------------------------------------3 1-3 研究目標---------------------------------------------7 第二章 文獻回顧-----------------------------------------14 2-1 嵌入式DRAM(embedded DRAM)技術-----------------------14 2-2 Al2O3、HfO2薄膜-------------------------------------15 2-3 Al2O3、HfO2薄膜製備方法-----------------------------16 2-4 原子層化學氣相沈積法(ALCVD)-----------------------19 2-5 ALCVD技術優缺點-------------------------------------23 2-6 電極的選擇------------------------------------------25 2-6-1 Pt電極-----------------------------------------26 2-6-2 PtOx電極---------------------------------------27 2-6-3 TiN電極----------------------------------------28 2-7 介電分析--------------------------------------------29 2-7-1 介電常數---------------------------------------29 2-7-2 介電損失---------------------------------------31 2-7-3 介電強度---------------------------------------33 2-8 漏電流----------------------------------------------36 第三章 實驗步驟-----------------------------------------54 3-1 薄膜電容的製作--------------------------------------54 3-1-1 下電極製作-------------------------------------54 3-1-2 In-situ表面電漿處理----------------------------55 3-1-3 介電薄膜沈積-----------------------------------56 3-1-4 Al2O3、HfO2介電薄膜快速熱退火處理--------------57 3-1-5 上電極製作-------------------------------------57 3-2 薄膜的量測與分析------------------------------------58 3-2-1 膜厚量測---------------------------------------58 3-2-2 微觀結構---------------------------------------58 3-2-3 X光光電子能譜分析------------------------------58 3-2-4 介電常數與散逸因子量測-------------------------59 3-2-5 電流-電壓量測----------------------------------59 第四章 結果與討論---------------------------------------68 4-1 Al2O3薄膜鍍製在不同底電極之研究---------------------68 4-1-1 AFM、SEM表面結構分析---------------------------68 4-1-2 Al2O3薄膜電性探討------------------------------69 4-2 探討In-situ電漿處理對成長Al2O3薄膜的影響------------69 4-2-1 AFM、SEM表面結構分析---------------------------70 4-2-2 TEM結構分析------------------------------------70 4-2-3 X光光電子能譜(XPS)分析------------------------71 4-2-4 電漿成份對Al2O3薄膜電性之探討------------------72 4-2-5 上電極對Al2O3薄膜電性之探討--------------------74 4-2-6 不同膜厚之Al2O3薄膜電性探討--------------------75 4-2-7 Al2O3薄膜鍍製在不同底電極之漏電機制探討--------76 4-3 HfO2薄膜研究----------------------------------------76 4-3-1 TEM結構分析------------------------------------77 4-3-2 HfO2薄膜鍍製在不同底電極之研究-----------------77 4-3-3 探討In-situ水氣電漿處理對成長HfO2薄膜的影響----78 4-3-4 HfO2薄膜鍍製在不同底電極之漏電機制探討---------80 4-4 探討熱處理對Al2O3和HfO2薄膜的影響--------------------81 4-4-1 熱處理對Al2O3薄膜MIM電性的影響------------------81 4-4-2 熱處理對HfO2薄膜MIM電性的影響-------------------82 第五章 結論--------------------------------------------121 第六章 參考文獻----------------------------------------123 圖目錄 圖1-1 一九七○年代Intel推出一一○三記憶體---------------9 圖1-2 DRAM的應用範圍------------------------------------9 圖1-3 2005年DRAM大廠市佔率-----------------------------10 圖1-4 記憶體的種類--------------------------------------10 圖1-5 1電晶體+1電容型的記憶單元------------------------11 圖1-6 DRAM電容面積發展---------------------------------11 圖1-7 不同熱處理下poly-Si表面變化情形------------------12 圖2-1邏輯線路和DRAM的製程的示意圖-----------------------41 圖2-2 與Si接合後有良好熱穩定性之週期表元素-------------41 圖2-3 各種High-k材料與Si接合之能帶圖------------------42 圖2-4 (a)蒸鍍系統(b) 濺鍍系統---------------------------43 圖2-5 CVD系統:上圖為冷腔壁(cold-wall)式、下圖為熱腔壁(hot-wall)式-------------------------------------------43 圖2-6 CVD五種主要反應機制------------------------------44 圖2-7 APCVD反應設備圖----------------------------------44 圖2-8 LPCVD反應設備圖----------------------------------44 圖2-9 PECVD反應設備圖----------------------------------45 圖2-10 ECRCVD反應設備圖--------------------------------45 圖2-11 表面達飽和狀態-----------------------------------45 圖2-12 理想鍍膜cycle數與膜厚成正比關系------------------46 圖2-13 ALCVD(a)the growth curve(b)the GPC (c)the change in the GPC (Growth per cycle)--------------------------------46 圖2-14水平式和垂直式之ALCVD反應腔體---------------------47 圖2-15 ALCVD反應機制(以成長Al2O3為例)-------------------48 圖2-16 不同氣流量比例、基板溫度與PtOx相形成的關係-------49 圖2-17 成長半球型晶粒之Si示意圖------------------------49 圖2-18 材料四種極化機構之示意圖 (a)電子極化 (b)離子極化 (c) 固有電矩的轉向極化 (d)空間電荷極化-------------------50 圖2-19 介電質中不同極化機構與頻率之關係------------------51 圖2-20 (a)實際電容之等效電路圖 (b)其電壓電流的相位關係圖---------------------------------------------------------51 圖2-21 三種介電損失途徑對頻率變化之關係圖----------------52 圖2-22 能障限制之傳導機制:(a)蕭特基發射 (b)穿隧效應----52 圖2-23 本體限制之傳導機制:(a)空間電荷限制傳導 (b)離子傳導 (c)普爾-夫倫克爾效應-------------------------------------53 圖3-1 實驗製程流程圖------------------------------------65 圖3-2 ALCVD製程設備------------------------------------66 圖3-3 量測分析流程圖------------------------------------67 圖4-1 (a)TiN(b)Pt(c)PtOx底電極AFM表面形態圖-----------84 圖4-2 Al2O3鍍製在(a)Pt(b) PtOx底電極之SEM表面影像圖----85 圖4-3 Al2O3鍍製在(a)TiN(b)Pt(c)PtOx底電極之AFM表面形態圖---------------------------------------------------------86 圖4-4 Al2O3在不同底電極Pt、PtOx上之J-V關係圖(Au為上電極) ---------------------------------------------------------87 圖4-5 Al2O3在不同底電極Pt、PtOx上之J-V關係圖(TiAu為上電極) ---------------------------------------------------------87 圖4-6 Al2O3在TiN底電極上之J-V關係圖(TiAu為上電極)------88 圖4-7 電漿處理後(a)Pt(b)PtOx底電極AFM表面形態圖--------88 圖4-8 電漿處理後鍍製Al2O3薄膜在(a)Pt(b) PtOx底電極之SEM表面影像圖-------------------------------------------------89 圖 4-9 電漿處理後鍍製Al2O3薄膜在不同底電極之AFM表面影像圖---------------------------------------------------------90 圖4-10 Al2O3鍍製在(a)Pt(b) PtOx底電極之TEM影像圖(Au為上電極)、Al2O3鍍製在水氣電漿處理之(c)Pt(d) PtOx底電極TEM影像圖 (Au為上電極)--------------------------------------------91 圖4-11 Al2O3鍍製在(a)Pt(b)PtOx(c)TiN底電極之TEM影像圖、 Al2O3鍍製在水氣電漿處理之(d)Pt(e) PtOx(f)TiN底電極TEM影像圖 (TiAu為上電極)------------------------------------------93 圖4-12 XPS分析(a)Pt底電極(b)PtOx底電極受電漿處理後之能譜圖(c)為比較Pt、PtOx底電極之能譜圖-----------------------97 圖4-13 Pt底電極受不同電漿處理後成長Al2O3薄膜之J-V關係圖(TiAu為上電極)-------------------------------------------98 圖4-14 PtOx底電極受不同電漿處理後成長Al2O3薄膜之J-V關係圖(TiAu為上電極)- -----------------------------------------98 圖4-15 TiN底電極受不同電漿處理後成長Al2O3薄膜之J-V關係圖(TiAu為上電極)- -----------------------------------------99 圖4-16 比較不同底電極經水氣電漿處理後之Al2O3 J-V關係(TiAu為上電極)-----------------------------------------------100 圖4-17 不同上電極對水氣電漿處理成長Al2O3薄膜之J-V關係圖--------------------------------------------------------100 圖4-18 水氣電漿處理成長不同膜厚Al2O3薄膜於Pt底電極之J-V關係圖(TiAu為上電極)------------------------------------101 圖4-19 水氣電漿處理成長不同膜厚Al2O3薄膜於PtOx底電極之J-V關係圖(TiAu為上電極)------------------------------------101 圖4-20 水氣電漿處理成長不同膜厚Al2O3薄膜於TiN底電極之J-V關係圖(TiAu為上電極)------------------------------------102 圖4-21 水氣電漿處理不同底電極之MIM電容的J-CET關係圖--102 圖4-22 Al2O3在不同底電極Pt、PtOx、TiN之J-E圖----------103 圖4-23 Al2O3在不同底電極之ln(J)- E1/2圖(正偏壓)----------103 圖4-24 Al2O3在不同底電極之ln(J)- E1/2圖(負偏壓)----------104 圖4-25 Al2O3在不同底電極之ln(J/E2)-E-1圖(正偏壓)---------104 圖4-26 Al2O3在不同底電極之ln(J/E2)-E-1圖(負偏壓)---------105 圖4-27 HfO2鍍製在(a)Pt(b)TiN底電極之TEM影像圖、HfO2鍍製在水氣電漿處理之(c)Pt(d)TiN底電極TEM影像圖(TiAu為上電極)-106 圖4-28 HfO2薄膜在不同底電極之J-V關係圖 (TiAu為上電極)-108 圖4-29 HfO2薄膜鍍製在水氣電漿處理之不同底電極之J-V關係圖(TiAu為上電極)------------------------------------------108 圖4-30 Pt、PtOx底電極經水氣電漿處理前後之HfO2 J-V關係圖 (TiAu為上電極)------------------------------------------109 圖4-31 TiN底電極經水氣電漿處理前後之HfO2 J-V關係圖----109 圖4-32 比較不同底電極之HfO2 J-V關係圖(TiAu為上電極)----110 圖4-33 HfO2在不同底電極Pt、PtOx、TiN之J-E圖----------111 圖4-34 HfO2在不同底電極之ln(J)-E1/2圖(正偏壓)-----------111 圖4-35 HfO2在不同底電極之ln(J)-E1/2圖(負偏壓)-----------112 圖4-36 Al2O3在不同底電極之ln(J/E2)-E-1圖(正偏壓)---------112 圖4-37 Al2O3在不同底電極之ln(J/E2)-E-1圖(負偏壓)---------113 圖4-38 Al2O3薄膜(Pt)不同熱處理條件下J-V關係圖----------114 圖4-39 Al2O3薄膜(PtOx)不同熱處理條件下J-V關係圖--------114 圖4-40 Al2O3薄膜(TiN)不同熱處理條件下J-V關係圖(a)TiN(b)經水氣電漿處理之TiN底電極--------------------------------115 圖4-41 HfO2薄膜熱處理(PMA)之J-V關係圖(a)Pt (b)經水氣電漿處理之Pt底電極-------------------------------------------117 圖4-42 HfO2薄膜熱處理(PMA)之J-V關係圖(a) PtOx(b)經水氣電漿處理之PtOx底電極---------------------------------------118 圖4-43 HfO2薄膜熱處理(PMA)之J-V關係圖(a) TiN (b)經水氣電漿處理之TiN底電極----------------------------------------119 表目錄 表1-1 幾種二元氧化物之基本特性--------------------------12 表1-2 幾種典型之高介電薄膜材料--------------------------13 表1-3 ITRS 2005下世代DRAM電容之介電材料與電極----------13 表2-1 各種High-k材料性質比較---------------------------42 表2-2 幾種金屬與矽之功函數------------------------------47 表2-3 ALCVD(即表中之ACVD)與一般CVD成長TiN之比較----50 表3-1 Pt之鍍膜條件-------------------------------------60 表3-2 Al之先趨物基本特性-------------------------------60 表3-3 PtOx之鍍膜條件-----------------------------------61 表3-4 Hf之先趨物基本特性-------------------------------61 表3-5 Al2O3薄膜之ALCVD製程參數--------------------------62 表3-6 HfO2薄膜之ALCVD製程參數--------------------------63 表3-7 ALCVD電漿製程參數--------------------------------64 表3-8 上電極(Au、Ti-Au)之蒸鍍條件-----------------------64 表4-1 Al2O3薄膜之MIM結構電容電性整理--------------------99表4-2 HfO2薄膜之MIM結構電容電性整理-------------------110表4-3 熱處理Al2O3薄膜之MIM結構電容電性整理------------116 表4-4 熱處理(PMA)HfO2薄膜之MIM結構電容電性整理---------120

    1. 黃維邦, “利用Pt(O)電極開發五氧化二鉭( Ta2O5 )薄膜之選擇性化學氣相沈 積技術研究”, 清華大學, 碩士論文 (2001)

    2. 虞有澄, “我看英代爾”,天下文化(1995)

    3. 新電子科技雜誌, “未來DRAM的發展趨勢”, 153 (1998/12)

    4. 林振華、林振富, “ULSI DRAM技術”, 全華科技圖書股份有限公司 (2001)

    5. 張志祥, 吳泰伯, “ G bit DRAM應用之強介電薄膜技術與發展”, 材料會訊, 4(3), (1997) 11

    6. D. E. Kotecki, “High-k Dielectric Materials for DRAM Capacitors”, Semiconductor International, 109 (1999)

    7. 曾鴻輝, “動態隨機存取記憶體之電容器的製造方法”, 電子資訊, 4(1), 14 (1998)

    8. A. Nitayama, Y. Kohyama, and K. Hieda, “Future Directions for DRAM Memory Cell Technology”, IEDM 98 (1998)

    9. K. N. Kim, H. S. Jeong, G. T. Jeong, C. H. Cho, W. S. Yang, J. H. Sim, K. H. Lee, G. H. Koh, D. W. Ha, J. S. Bae, J. G. Lee, and B. J. Park, “A 0.15um DRAM Technology Node for 4 Gb DRAM”, Symp. On VLSI Tech. Dig. of Tech. Paper, 16 (1998)

    10. K. S. Tang, W. S. Lau, and G. S. Samudra, “Trends in DRAM dielectrics”, IEEE Circuit and Devices, 27 (1997)

    11. H. S. Moon a), H. S. Choi, H. G. Jang, C. J. Hwang, S. H. Woo, I. K. Han, and H. S. Yang, ”Improvement of properties of dynamic random access memories capacitors by PH3 plasma doping process after the formation of hemispherical-grained silicon”, J. Vac. Sci. Technol. B 17, 1017 (1999)

    12. Hirohito Watanabe, Nahomi Aoto, Saburo Adachi, and Takamaro Kikkawa, “Device application and structure observation for hemispherical-grained Si”, J. Appl. Phys. 71, 3538 (1992)

    13. N. Matsuo, H. Ogawa, T. Kouzaki, and S. Okada, “Nucleation and growth mechanism of hemispherical grain polycrystalline silicon”, Appl. Phys. Lett. 60, 2607 (1992)

    14. J. M. Sallese a), A. Ils, D. Bouvet, P. Fazan, and Chris Merritt, “ Modeling of the depletion of the amorphous-silicon surface during hemispherical grained silicon formation”, J. Appl. Phys. 88, 5751 (2000)

    15. Hiroshi Iwai, and Shun’ichiro Ohmi, “CMOS downsizing and high-k gate insulator technology”, IEEE Device, Circuit, and System (2002)

    16. G. Lucovsky, “Electronic structure of high-k transition-metal and rare-earth gate dielectrics for aggressively-scaled silicon devices”, IWGI, 14 (2001)

    17. International Technology Roadmap for Semiconductor 2005

    18. 劉子平, “下電極材料對化學氣相沉積Ta2O5薄膜應用在動態隨機存取記憶體 影響之研究”, 清華大學, 博士論文 (2002)

    19. 李佩娟, “以反應式濺鍍法製作低溫度係數(Ta,Ti)N薄膜電阻與高介電常數( Ta2O5)1-x-(TiO2)x薄膜電容”, 清華大學, 碩士論文 (1998)

    20. K. L. Saenger, and S. M. Rossnagel, “Properties and Decomposition Behaviors of Reactively Sputtered Pt(O) Electrode Material”, Mat. Res. Soc. Symp. Proc., 598, 57 (2000)

    21. M. H. Kim, T. S. Park, and E. Yoon, “Changes in preferred orientation of Pt thin films deposited by DC magnetron sputtering using Ar/O2 gas mixtures”, J. Mater. Res., 14(4), (1999) 1255

    22. S.J. Ding, C.Z. Zhu, M.F. Li, and D.W. Zhang, “Atomic-layer-deposited Al2O3-HfO2 -Al2O3 dielectrics for metal-insulator-metal capacitor applications”, Appl. Phys. Let. 87, 053501 (2005)

    23. Annelies Delabile, M.Caymax, and J.W. Maes, “ALD HfO2 surface preparation study”, Mater. Res. Soc.Vol.745, N5.11.1 (2003)

    24. J. Kwo and M. Hong, Mat. Res. Soc. Symp. Proc. 2003, 745, 312.

    25. H.Ishiuchi,“Embedded DRAM Technologies”,IEDM,(1997)33

    26. 王中樞,“內嵌式DRAM製程技術”,電子月刊,5(12) ,(1999)106

    27. 蔡育奇,“系統 LSI的記憶電容堆疊構造的現況及未來” ,電子月刊,5(1) ,(1999)161

    28. A. Waxman and K. H. Zaininger, “ Al2O3-silicon insulator gate field effect transistor”, Appl. Phys. Lett. 12, 109 (1968)
    29. V. Kottler, M. F. Gillies, and A. E. T. Kuiper, “An in situ x-ray photoelectron spectroscopy study of AlOx spin tunnel barrier formation”, J. Appl. Phys. 89, 3301 (2001)

    30. M. F. Gillies, A. E. T. Kuiper, R. Coehoorn, and J. J. T. M. Donkers, “Compositional, structural, electrical characterization of plasma oxidized thin aluminum layer for spin-tunnel junctions”, J. Appl. Phys. 88, 429 (2000)

    31. Han Gao, Cheng Mu, Fan Wang, Dongsheng Xu, Kai Wu,a) and Youchang Xie, “Field emission of large-area and graphitized carbon nanotube array on anodic aluminum oxide template”, J. Appl. Phys. 93, 5602 (2003)

    32. Aurelian C. Ga^lca, E Stefan Kooij,a) Herbert Wormeester, and Cora Salm, “Structural and optical characterization of porous anodic aluminum oxide”, J. Appl. Phys. 94, 4296 (2003)

    33. G. D. Wilk, R. M. Wallace, and J. M. Anthony, J. Appl. Phys, 89 5234 (2001)

    34. M. Copel, E. Cartier, E. P. Gusev, S. Guha, N. Bojarczuk, and M Poppeller, Appl. Phys. Lett. 78, 2670 (2001)

    35. E. Fredriksson and J. O. Carlsson, J. Chem. Vapor Dep. 1. 333 (1993)

    36. D. Riihela, M. Ritala, R. Matero, and M. Leskela, Thin Solid Films 289, 250 (1996)

    37. 連振炘, “金氧半元件物理課程講義 Chap. 8”, (2004)

    38. Michel Houssa, “High-K Gate Dielectrics”, published by Institute of Physics Publishing (2004)

    39. James Kolodzey, Enam Ahmed Chowdhury, Thomas N. Adam, Guohua Qui, I. Rau, Johnson Olufemi Olowolafe, John S. Suehle, and Yaun Chen, “Electrical conduction and dielectric breakdown in aluminum oxide insulators on silicon”, IEEE, Trans. Elec. Dev. 47, 121 (2000)

    40. G. D. Wilk a), R. M. Wallace b),and J. M. Anthony,” Applied Physics Review: High-k gate dielectrics: Current status and materials properties considerations”, J. Appl. Phys. 89, 5243 (2001)

    41. Dae-Gyu Park a), Heung-Jae Cho, Kwan-Yong Lim, Chan Lim, In-Seok Yeo, Jae-Sung Roh, and Jin Won Park, “Characteristics of n+ polycrystalline-Si/Al2O3/Si metal-oxide-semiconductor structures prepared by atomic layer chemical vapor deposition using Al(CH3)3 and H2O vapor”, J. Appl. Phys. 89, 6275 (2001)

    42. Hang Hu, Chunxiang Zhu, Y.F.Lu, M.F.Li, Byung Jin Cho, W.K.Choi “A high performance MIM capacitor using HfO2 dielectrics”, IEEE Electron Device Lett., vol.23, pp. 514-516, Sep.2002

    43. Sun Jung Kim, Byung Jin Cho, M.F. Li, Xiongfei Yu, Chunxiang Zhu, Albert Chin, Dim-Lee Kwong, “PVD HfO2 for high- precison MIM capacitor applications”, IEEE Electron Device Lett., vol.24, pp. 387-389, June.2003

    44. Q. Fang, J.Y. Zhang, Z.M. Wang, G. He, J. Yu, Ian W. Boyd, “High-k dielectrics by UV photo-assisted chemical vapor deposition ”, Microelectronic Engineering 66(2003) 621 -630

    45. J.F. Kang, H.Y. Yu, C. Ren, M.F. Li, D.S.H. Chan, “Ultra- thin HfO2 gate stack with TaN/HfN electrodes fabricated using a high temperature process”, Electrochemical and solid-state Letter,8(11) G311-G313 (2005)

    46. 莊達人, “VLSI製造技術” 高立圖書

    47. 國家奈米元件實驗室, ”積體電路製程技術見習班講義”, (2005)

    48. Szu-Wei Huang and Jenn-Gwo Hwu, “Electrical characterization and process control of cost-effective high-k aluminum oxide gate dielectrics prepared by Anodization Followed by furnace annealing”, IEEE Trans. Elec. Dev. 50, 1658 (2003)

    49. James D. Plummer, Michael D. Deal, Peter B. Griffin, “Silicon VLSI Technology Fundamentals, Practice and Modeling”, published by Prentice Hall Electronics and VLSI Series

    50. Toshiro Maruyama, and Susumu Arai, “Aluminum oxide thin films prepared by chemical vapor deposition from aluminum acetylacetonate”, Appl. Phys. Lett. 60, 322 (1992)

    51. J. S. Kim, H. A. Marzouk, P. J. Reucroft, J. D. Roberision, and C. E. Hamrin, Jr., “Fabrication of aluminum oxide thin films by a low-pressure metalorganic chemical vapor deposition technique”, Appl. Phys. Lett. 62, 681 (1993)

    52. H. O. Pierson, “Handbook of Chemical Vapor Deposition Principles, Technology and Application”, Noyes Publications U.S.A., (1995)

    53. S. Guha a), E. Cartier, N. A. Bojarczuk, J. Bruley b), L. Gignac, and J. Karasinski, “High-quality aluminum oxide gate dielectrics by ultra-high vacuum reactive atomic-beam deposition”, J. Appl. Phys. 90, 512 (2001)

    54. Hang Hu, Chunxiang Zhu, Y.F. Lu, Y.H. Wu, T.Liew, M.F.Li, B.J. Cho, W.k. Choi, N. Yakovlev “Physical and electrical characterization of HfO2 MIM capacitors for Si analog circuit applications ”, J. Appl. Phys.94, 551 (2003)

    55. W. Vandervorst, B. Brijs, H. Bender, O.T. Conard, J.Petry, O. Richard, S.V. Elshocht, A. Delabie, M. Caymax, S.De Gendt, “Physical characterization of ultrathin high k dielectrics ”,Mat. Res. Soc. Symp. Proc. Vol.745 (2003)

    56. 李清楠, “下電極材料對原子層化學氣相沈積Al2O3高介電薄膜應用在奈米尺度世代DRAM影響之研究”, 清華大學, 碩士論文 (2005)

    57. G. S. Higashi, and C. G.Fleming, “Sequential surface chemical reaction limited growth of high quality Al2O3 dielectric”, Appl. Phys. Lett. 55, 1963 (1989)

    58. Ronald Kuse,a) Manisha Kundu, Tetsuji Yasuda, Noriyuki Miyata, and Akira Toriumi, “Effect of precursor concentration in atomic layer deposition of Al2O3”, J. Appl. Phys. 94, 6411 (2003)

    59. Yuniarto Widjaja, Charles B. Musgrave,a) “Quantum chemical study of the mechanism of aluminum oxide atomic layer deposition”, Appl. Phys. Lett. 80, 3304 (2002)

    60. Martin M. Frank a),b), Yves J. Chabal b) and Glen D. Wilk b), “Nucleation and interface formation mechanisms in atomic layer deposition of gate oxides”, Appl. Phys. Lett. 82, 4758 (2003)

    61. J. B. Kim, D. R. Kwon, K. Chakrabarti, Chongmu Lee a) K.Y. Oh, and J.H. Lee, “Improvement in Al2O3 dielectric behavior by using ozone as an oxidant for the atomic layer deposition technique”, J. Appl. Phys. 92, 6739 (2002)

    62. M. Ritala, H. Saloniemi, M. Leskela, T. Prohaska, G, Friedbacher, and M. Grasserbauer, Thin Solid Films 286, 54 (1996)

    63. R. Matero, A. Rahtu, M. Ritala, M. Leskela, and T. Sajavaara, Thin Solid Films 368, 1 (2000)

    64. D. R. Strongin, J. F. Moore, and M. W. Ruckman, “Synchrotron radiation assisted deposition of aluminum oxide form condensed layer of trimethylaluminum and water at 78K”, Appl. Phys. Lett. 61. 792 (1992)

    65. Suvi Haukka, Eeva-Liisa, and Toumo Suntola, “Surface coverage of ALD precursors on oxides”, Appl. Surf. Sci. 82/83, 548-552 (1994)

    66. Suvi Haukka, Eeva-Liisa, and Toumo Suntola, “Analysis of hydroxyl group controlled atomic layer deposition of hafnium precursors dioxide from hafnium tetrachloride and water ”, J. Appl. Phys. 95, 4777 (2004)

    67. Mathew D. Halls, Krishnan Raghavachari, “Atomic layer deposition growth reactions of Al2O3 on Si(100)-2x1”, J. Phys. Chem. B 2004,108,4058-4062

    68. M.L. Huang, Y.C. Chang, C.H. Chang, Y.J. Lee, P. Chang, J. Kwo, T.B. Wu, M. Hong, “Surface passivation of 3-5 compound semiconductors using atomic layer deposition grown Al2O3 ”, Appl. Phys. Lett. 87, 252104 (2005)

    69. H. S. Nalwa, “Handbook of thin film materials: Vol. 1 Deposition and processing of thin films”, publishes by Academic Press, P.103~P.159

    70. T.M. Klein, D. Niu, W. S. Epling, W. Li, D. M. Maher, C. C. Hobbs, R. I. Hegde, I. J. Baumyol, and G. N. Parsons a), “Evidence of aluminum silicate formation during chemical vapor deposition of amorphous Al2O3 thin films on Si(100)”, Appl. Phys. Lett. 75, 4001 (1999)

    71. Aicha A. R. Elshabini-Riad Fred D. “ Thin Film Technology Handbook”, The McGraw-Hill Companies, Inc, ISBN0-07-115998-7

    72. 陳力俊等人主編,”微電子材料與製程”, (2000) P.107

    73. H. N. AlShareef, K. D. Gifford, S. H. Rou, P. H. Hren, O. Auciello, A. I. KIngon, Integrated Ferroelectrics, (1993) P.321

    74. Lynnette D. Madsen, Louise Weaver, Henrik, Ljungcrantz, Alison J. Clark, J. of Electroinc Mater., 27 (1998) P.418

    75. T. Maeder, L. Sagalowicz and P. Muralt, “ Stabilized Platinum Electrodes for Ferroelectric Film Deposition using Ti, Ta and Zr Adhesion Layers”, Jpn. J. Appl. Phys. 37, 2007 (1998)

    76. 吳世全, 電子期刊第五卷第五期, P.129

    77. J. R. Mcbride, G. W. Graham, C. R. Peters, and W. H. Weber, “Growth and characterization of reactively sputtered thin-film platinum oxides”, J. Appl. Phys. 69, 1596 (1991)

    78. Yoshio Abe, Midori Kawamura and Katsutaka Sasaki, “Preparation of PtO and α-PtO2 thin films by reactive sputtering and their electric properties”, Jpn. J. Appl. Phys. 38, 2092 (1999)

    79. Kwangbae Lee a), Byung Roh Rhee, and Chanku Lee, “Characteristics of ferroelectric Pb(Zr,Ti)O3 thin films having Pt/PtOx electrode barrier”, Appl. Pyhs. Lett. 79, 821 (2001)

    80. Jae-Hyun JOO, Wan-Don Kim, Yong-Kuk Jeong, Seok-Jun Won, Soon-Yeon Park, Cha-Young YOO, Sun-Tae Kim and Joo-Tae Moon, “ Rugged metel electrode (RME) for high density memory devices”, Jpn. J. Appl. Phys. 40, 826 (2001)

    81. Jae Hyoung Choi, Jeong-Hee Chung, Se-Hoon Oh, Jeong Sik Choi, Cha-young Yoo, Sung-Tae Kim, U-In Chung, and Jeong-Tae Moon, “New approaches to Improve the Endurance of TiN/HfO2/TiN Capacitor during the Back-end process for 70nm DRAM Device”, IEDM 03-661, 2003

    82. D. Mao, and J. Hopwood, “Ionized physical vapor deposition of titanium nitride: A deposition model”, J. Appl. Phys. 96, 820 (2004)

    83. C. –S. Shin, S. Rudenja, D. Gall, N. Hellgren, T. –Y. Lee, I. Petrov a), and J. E. Greene, “ Growth, surface morphology, and electrical resistivity of strained substoichiometric epitaxial TiNx (0.67<x<1) layer on MgO (100)”, J. Appl. Phys. 95, 356 (2004)

    84. Sang Bom Kang, Yun Sook Chae, Mee Young Yoon, Hyeun Seog Leem, Chang Soo Park, Sang In Lee, and Moon Yong Lee, “Low temperature processing of conformal TiN by ACVD (advanced chemical vapor deposition) for Multilevel Metallization in high Density ULSI Devices”, IEEE, IITC 102-104 (1998)

    85. J.Roberson and C.W.Chen, “Schottky barrier heights of tantalum oxide, lead titanate, and strontium bismuth tantalate”, Appl. Phys. Lett., Vol.74, No.8,22(1999)

    86. C.K. Huang, C.H. Chang, T.B. Wu, “On the suppression of hydrogen degradation in Pb Zr0.4,Ti0.6O3 ferroelectric capacitors with PtOx top electrode”, J. Appl. Phys. 98, 104105 (2005)

    87. C.K. Huang, T.B. Wu, “Plasma etching and hydrogen blocking characteristics of PtOx thin films in ferroelectric capacitor fabrication”, Appl. Phys. Lett., Vol.83, (2003)

    88. T.P. Liu, W.P. Huang, T.B. Wu, “Enhanced chemical vapor deposition of tantalum oxide thin films from in-situ reduction of PtOx electrode”, J. Vac. Sci. Technol.,A 21 (2) (2003)

    89. 黃俊凱, “DRAM 運用之Ta2O5薄膜電容下電極材料的研究”, 清華大學, 碩士論文 (1999)

    90. B. E. Gnade, S. R. Summerfelt and D. Crenshaw, “Processing and Device Issues of High Permittivity Materials for DRAMs”, O. Auciello and R. Waser (eds.), Science and Technology of Electroceramic Thin Films, published by Kluwer Ademic Publisher, (1995)

    91. A. J. Moulson and J. M. Herbet, “Electroceramics -Materials、Properties、Applications”, published by Chapman and Hall, (1990)

    92. L. L. Hencb and J. K. West, “Principles of Electronic Ceramics”, published by John Wiley and Sons, Inc.. (1990)

    93. M. W. Barsoum, “Fundamentals of Ceramics”, published by McGraw-Hill, Inc., (1997)

    94. W. D. Kingery, H. K. Bowen and D. R. Uhlmann, “Introduction to ceramics”, published by John Wiley Sons, (1991)

    95. 李雅明, “固態電子學”, 全華科技圖書, (1995)

    96. 吳朗, “電子陶瓷-介電”, 全欣資訊圖書, (1994)

    97. M. Ohring, “The materials Science of Thin Films”, published by Academic Press, Inc., (1992)

    98. A. Rose, “Space-Charge-Limited Currents in Solids”, Phys. Rev., 97(6), (1995) 1538

    99. M. A. Lampert, “Simplified Theory of Space-Charge-Limited Currents in an Insulator with Traps”, Phys. Rev., 103(6), (1956) 1648

    100. C. A. Mead, “Electron Transport Mechanisms in Thin Insulating Films”, Phys. Rev., 128(5), (1962) 2088

    101. J. G. Simmons, “Potential Barriers and Emission-Limited Current Flow Between Closely Spaced Parallel Metal Electrode”, J. Appl. Phys. 35,2472 (1964)

    102. K. L. Chopra, “Avalanche-Induced Negative Resistance in Thin Oxide Films”, J. Appl. Phys. 36, 184 (1965)

    103. S. M. Sze, “Current Transport and Maximum Dielectric Strength of Silicon Nitride Films”, J. Appl. Phys. 38, 2951 (1967)

    104. J. G. Simmons, “Poole-Frenkel Effect and Schottky Effect in Metal-Insulator-Metal Systems”, Phys. Rev. 155, 657 (1967)

    105. S. M. Hu, D. R. Kerr and L. V. Gregor, “Evidence of Hole Injection and Trapping in Silicon Nitride Films Prepared by Reactive Sputtering”, Appl. Phys. Lett. 10, 97 (1967)

    106. J. R. Yeargan, “The Poole-Frenkel Effect with Compensation Present”, J. Appl. Phys. 39, 5600 (1968)

    107. P. C. Arnett and N. Klein, “Poole-Frenkel Conduction and the Neutral Trap”, J. Appl. Phys. 46, 1399 (1975)

    108. 張志祥, “利用低壓化學氣相沉積法製作動態隨機存取記憶體應用之(Ta2O5)1-x-(TiO2)x介電薄膜的研究”, 清華大學, 博士論文 (2000)

    109. 施敏著,黃調元譯, “半導體元件物理與製作技術”, 國立交通大學出版社, (2002)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE