簡易檢索 / 詳目顯示

研究生: 林長義
論文名稱: 利用中空陰極放電管研究鉈原子之光阻抗與飽和吸收光譜
Optogalvanic and Laser Spectroscopy of Thallium Using a Hollow Cathode Lamp
指導教授: 劉怡維
口試委員: 劉怡維
余怡德
周哲仲
張銘顯
學位類別: 博士
Doctor
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 52
中文關鍵詞: 中空陰極放電管光阻抗飽和吸收蘭姆凹陷雷射穩頻聲光調制調制傳遞似色散螢光
外文關鍵詞: hollow cathode lamp, Thallium, opotogalvanic, saturation absorption, lamb dip, laser frequency stablization, AOM, modulation transfer, dispersive- like, fluorescence
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中空陰極放電管內因為高壓放電的緣故將會導致鉈金屬脫離陰極束縛,因此放電管內就產生了許多熱運動的鉈原子。我們詳細研究了鉈放電管和外來雷射光共振時產生的現象,觀察到了一些特別的行為。本論文會展示雷射光在377 奈米的鉈原子躍遷頻率時的光阻抗和飽和吸收光譜,並且和螢光光譜一起做分析比較。 另外也利用了聲光調制器產生兩個頻率不同的泵光,再使用了調制傳遞的技巧,將得出的兩個蘭姆凹陷訊號相減,得到了「似色散譜線」。我們使用了這個「似色散譜線」來做雷射穩頻,此穩頻結果可以用在將來的雷射冷卻鉈原子實驗上。


    A thallium hollow cathode lamp, which provides high density atomic vapor using sputtering process, is a compact atomic source for spectroscopy study. The interaction between this lamp and incoming light on resonance frequency has been well studied. In this thesis, both optogalvanic spectra and saturation absorption spectra in 377 nm transition of thallium are studied and in comparison with laser induced fluorescence. Moreover, a dispersive- like signal is obtained as a differential signal between two saturation absorption lamb-dips results from by two pump beams with a frequency difference derived from an acousto-optic modulator. One of the beams is frequency shifted by the modulator. This method combines the approach of difference of two frequency shifted lamb-dips and modulation transfer technique. The dispersive- like signal is used for laser frequency stabilization is used for the future laser cooling experiment.

    摘要 V Abstract II Acknowledgement III Contents V Chapter 1 Introduction 1 1.1 Background 1 1.2 Motivation 2 1.2.1 Thallium source 2 1.2.2 Stabilization method 3 1.3 Energy level of thallium 4 Chapter 2 Basic principles 7 2.1 Optogalvanic effect 7 2.2 Fluorescence and Absorption 8 2.3 Line Broadening Effects 10 2.3.1 Collision Effect 11 2.3.2 Power Effect 11 2.3.3 Doppler Effect 14 2.4 Saturation Absorption 16 2.4.1 Rate Equation Approximation 17 2.4.2 Modulation Transfer 18 2.4.3 Velocity Changing Collisions 19 2.5 Dispersive- like signal 20 2.5.1 Principle 20 2.5.2 Mathematical Simulation 22 2.5.3 Simulation including Frequency Shift 23 Chapter 3 Experiment 25 3.1 Light source 25 3.1.1 Reference cavity 25 3.1.2 Second harmonic generation cavity 28 3.2 Thallium source 29 3.2.1 Oven chamber and atomic beam 29 3.2.2 Hollow cathode lamp 30 3.3 Optogalvanic Experiment 32 3.4 Saturation Absorption Experiment 34 Chapter 4 Results & analysis 35 4.1 Optogalvanic Spectra 35 4.1.1 Current Dependence 39 4.1.2 Spectra 39 4.2 Saturation Absorption Spectra 39 4.2.1 Gaussian Profile 39 4.2.2 Spectra 40 4.3 Dispersion-like Spectra 42 4.4 Laser Frequency Stabilization 46 Chapter 5 Conclusions 48 5.1 Summary 48 5.2 Future work 48 Reference 50

    [1] T. D. LEE and C. N. YANG, “Question of parity conservation in weak interactions,” Phys. Rev. 104, 254 (1956).
    [2] C. S. Wu et al., “Experimental test of parity conservation in beta decay,” Phys. Rev. 105, 1413 (1957).
    [3] M. A. Bouchiat and C. Bouchiat, “I. parity violation induced by weak neutral currents in atomic physic,” Phys. Lett. B48, 111 (1974).
    [4] P. G. H. Sandars, “The electric dipole moment of an atom,” Phys. Lett. 14, 194 (1965)
    [5] Z.W. Liu and H. P. Kelly, “Analysis of atomic electric dipole moment in thallium by all-order calculations in many-body perturbation theory,” Phys. Rev. A 45, R4210 (1992).
    [6] P. A. Vetter, D. M. Meekhof, P. K. Majumder, S. K. Lamoreaux, and E. N. Fortson, “Precise Test of Electroweak Theory from a new measurement of parity nonconservation in atomic thallium,” Phys. Rev. Lett. 74, 2658 (1995).
    [7] N. H. Edwards, S. J. Phipp, P. E. G. Baird, and S. Nakayama, “Precise measurement of parity nonconserving optical rotation in atomic thallium,” Phys. Rev. Lett. 74, 2654 (1995).
    [8] B. C. Regan, E. D. Commins, C. J. Schmidt, and D. DeMille, “New limit on the electron electric dipole moment,” Phys. Rev. Lett. 88, 071805 (2002).
    [9] Y.-W. Liu and P. E. G. Baird, “Optical pumping in thallium: spectroscopy, coherence and linewidths,” J. Phys. B: At. Mol. Opt. Phys. 35, 4241 (2002).
    [10] I. Fan, T.-L. Chen, Y.-S. Liu, Y.-H. Lien, J.-T. Shy, and Y.-W. Liu, “Prospects of laser cooling in atomic thallium,” Phys. Rev. A 84, 042504 (2011).
    [11] G. Nave, R. C. M. Learner, A. P. Thorne, and C. J. Harris, “Precision Fe I and Fe II wavelengths in the ultraviolet spectrum of the iron–neon hollow-cathode lamp,” J. Opt. Soc. Am. B 8, 10 (1991).
    [12] W. B. Bridges, "Characteristics of an Opto-Galvanic effect in cesium and other gas discharge plasmas," J. Opt. Soc. Am. 68, 352 (1978).
    [13] R. A. Keller, R. Engleman, Jr., and E. F. Zalewski, “Opto-galvanic spectroscopy in a uranium hollow cathode discharge,” J. Opt. Soc. Am. 69, 738 (1979).
    [14] N. Taylor, N. Omenetto, B. W. Swith, et al., “High-resolution Fabry–Perot interferometric emission measurements of the 535.046 nm thallium line in a see-through hollow cathode discharge,” Appl. Phys. B 89, 107 (2007).
    [15] C.D. West, H.G.C. Human, “Self-absorption and Doppler temperatures of emission lines excited in a glow discharge lamp,” Spectrochim. Acta B 31, 81 (1976)
    [16] G. C. Bjorklund, “Frequency-modulation spectroscopy: a new method for measuring weak absorptions and dispersions,” Opt. Lett. 5, 15 (1980).
    [17] C. Weiman and T. W. H¨ansch “Doppler-Free Laser Polarization Spectroscopy,” Phys. Rev. Lett. 36 1170–3 (1976)
    [18] C. P. Pearman, C. S. Adams, S. G. Cox, P. F. Griffin, D. A. Smith, and I. G. Hughes,“Polarization spectroscopy of a closed atomic transition: applications to laser frequency locking,”J. Phys. B 35, 5141 (2002).
    [19] B. Cheron, H. Gilles, J. Hamel, O. Moreau, H. Sorel, “Laser frequency stabilization using Zeeman effect,” J. Phys. III Fr. 4, 401 (1994)
    [20] N. P. Robins, B. J. J. Slagmolen, D. A. Shaddock, J. D. Close, and M. B. Gray, “Interferometric, modulation-free laser stabilization,” Opt. Lett. 27, 21 (2002).
    [21] S. E. Park, H. S. Lee, T. Y. Kwon, and H. Cho, “Dispersion-like signals in velocity-selective saturated-absorption spectroscopy,” Opt. Commun., 192, 49 (2001).
    [22] R. P. Abel et al., “Laser frequency stabilization to excited state transitions using electromagnetically induced transparency in a cascade system,” Appl. Phys. Lett. 94, 071107 (2009).
    [23] van Ooijen E D, Katgert G. and van der Straten P, “Laser frequency stabilization using Doppler-free bichromatic spectroscopy,” Appl. Phys. B. 79,57 (2004)
    [24] C.-C. Chou, T. Lin, P.-C. Huang, and M.-H. Chien, “Modulation-free laser frequency stabilization to molecular absorption using single acoustooptic frequency shifter,” IEEE Photon. Technol. Lett. 16, 8 (2004).
    [25] Sukenik C I, Busch H C and Shiddiq M, “Modulation-free laser frequency stabilization and detuning,” Opt. Commun. 203 133 (2002)
    [26] U. Dammalapati, I. Norris, and E. Riis, “Saturated absorption spectroscopy of calcium in a hollow-cathode lamp,” J. Phys. B 42, 165001 (2009).
    [27] T. Andersen and G. Sorensen, “Systematic study of atomic lifetimes in gallium, indium, and thallium measured by the beam-foil technique,” Phys. Rev. A 5, 2447 (1972)
    [28] NIST Atomic Transition Probability tables.
    [29] W.Demtroder, Laser Spectroscopy : Vol.2: Experimental Techniques, 4rd ed. (Springer, 2008)
    [30] Barbieri B, Beverini N and Sasso A, “Optogalvanic spectroscopy,” Rev. Mod. Phys. 62 603–44 (1990)
    [31] Lawler, J. E., A. I. Ferguson, J. E. M. Goldsmith, D.J.Jackson, and A. L. Schawlow, “Doppler-free intermodulated optogalvanic spectroscopy”, Phys. Rev. Lett. 42, 1046 (1979)
    [32] 7. L E.E. de Araujo, S. A. Carvalho, L. S. Cruz, A. A. Soares, A. Mirage, D. Pereira, F. C. Cruz, “Optogalvanic detection of velocity-selective optical pumping in an open, cascade atomic medium,” Opt. Commun. 281, 626-632 (2008).
    [33] Christopher J. Foot, Atomic physics. (Oxford, 2005)
    [34] W.Demtroder, Laser Spectroscopy : Vol.1: Basic Principles, 4rd ed. (Springer, 2008)
    [35] Dmitry Budker et al., Atomic Physics, 2ed. (Oxford, 2008)
    [36] W.E Lamb, “Theory of an optical maser”, Phys. Rev. A 134, 1429 (1964)
    [37] V.S. Letokhov, V.P. Chebotayev: Nonlinear Laser Spectroscopy, (Springer Ser. Opt. Sci. 1977)
    [38] P. W. Smith and T. Hansch, ‘‘Cross-relaxation effects in the saturation of the 6328-A neon-laser line,’’ Phys. Rev. Lett. 26, 740–743 (1971).
    [39] J. Tenenbaum er al., ‘‘Velocity changing collisions in saturation absorption of U,’’ J. Phys. B 16, 4543–4553 (1983).
    [40] C. Brechignac, R. Vetter, and P. R. Berman, ‘‘Influence of collisions on saturated- absorption profiles of the 557 nm line of KrI,’’ J. Phys. B 10, 3443–3450 (1977).
    [41] Cavasso-Filho R L, Mirage A, Scalabrin A, Pereira D and Cruz F C, “Laser spectroscopy of calcium in hollow-cathode discharges” J. Opt. Soc. Am. B 18 1922–7 (2001).
    [42] Siegman, Lasers. (University Science Books, Mill Valley, 1986)
    [43] S.-M. Yang, Master’s thesis, National Tsing Hua University (2004)
    [44] W.-L. Cheng, Master’s thesis, National Tsing Hua University (2005)
    [45] Y.-S. Liu, Master’s thesis, National Tsing Hua University (2005)
    [46] T.-L. Chen, Master’s thesis, National Tsing Hua University (2007)
    [47] H¨ansch T W and Couillaud B, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun. 35 441–4 (1980)
    [48] T.-L. Chen, et al., “Absolute Frequency Measurement of the 378 nm Transition in Thallium,” in published.
    [49] Smith G, “Collision broadening and shift in the resonance line of calcium,” J. Phys. B: Atom. Mol. Phys. 5 2310–9 (1972)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE