研究生: |
龔桓萱 Kung, Huan-Hsuan |
---|---|
論文名稱: |
使用深度遷移學習自動測定 Fluxonium 超導量子位元參數 Automatic Characterization of Fluxonium Superconducting Qubits Parameters with Deep Transfer Learning |
指導教授: |
林晏詳
Lin, Yen-Hsiang |
口試委員: |
許耀銓
Hoi, Io-Chun 王道維 Wang, Daw-Wei |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 英文 |
論文頁數: | 52 |
中文關鍵詞: | Fluxonium 、量子位元參數 、自動測定量子位元參數 、深度遷移學習 、機器學習 |
外文關鍵詞: | fluxonium, qubit parameter, automatic characterization, deep transfer learning, machine learning |
相關次數: | 點閱:58 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
精確決定量子位元參數是成功實施量子資訊與計算應用的關鍵步驟。超導 fluxonium 量子位元有三個電路參數,EC、EL 和 EJ,這些參數決定了其能譜和躍遷特性。通過測量躍遷能譜並將其與 fluxonium 量子電路的哈密頓量進行擬合,可以獲得這三個參數。然而,傳統方法中量子位元的測定通常依賴於耗時且手動的擬合過程。
在本論文中,我們提出了一種自動化測定參數的方法。我們使用不同磁場下的能譜作為輸入特徵,首先對測量的能譜自動化的進行初步降躁和選點,利用已建立好的深度遷移學習模型,實現參數的初步估計,並以此為根基完成後續的自動化標記譜線及擬合。
我們利用此方法估算 fluxonium 量子位元的參數,從而展示這種方法的有效性。
與傳統擬合方法相比,我們的方法引入了自動化,顯著加速並提高了初始化過程的準確性,逐步淘汰了手動技術。我們也展示了,即使只有部分關鍵信息,我們的方法也能識別量子位元參數,從而減少測量光譜所需的時間。此外,我們的方法可以輕鬆擴展到其他超導量子位元或不同的固態系統進行自動化測定。這為建造大規模量子處理器鋪平了道路。
Accurate determination of qubit parameters is a critical step in the successful implementation of quantum information and computation applications. The superconducting fluxonium qubit has three circuit parameters: EC, EL, and EJ, which dominate the energy spectrum and properties of transitions. By measuring the transition spectrum and fitting it to the Hamiltonian of the fluxonium quantum circuit, these three parameters can be obtained. However, in traditional methods, the measurement of qubits typically relies on a time-consuming and manual fitting process.
In this thesis, we propose a method for automated parameter characterization. We use energy spectrem under different magnetic fields as input features. First, we perform automated preliminary noise reduction and point selection on the measured energy spectra. Using the pre-trained deep transfer learning model, we obtain an initial parameter estimation. Based on this initial gueess, we complete subsequent automated spectrum points labeling and fitting.
We use this method to estimate the parameters of a fluxonium qubit, thereby demonstrating the effectiveness of this approach.
Compared to traditional fitting methods, our approach introduces automation, significantly speeding up and improving the accuracy of the initialization process, gradually eliminating manual techniques. We also demonstrate that with only partial crucial information, this approach allows for the identification of qubit parameters, which can reduce the time required for measuring the spectrum. Moreover, our method can be easily extended to other fluxonium qubits or different solid-state systems for automated characterization. This paves the way for the construction of large-scale quantum processors.
[1] M. Demmer, R. Fonseca, and F. Koushanfar, “Richard feynman: Simulating physics with computers,” 01 2008.
[2] P. Krantz, M. Kjaergaard, F. Yan, T. P. Orlando, S. Gustavsson, and W. D. Oliver, “A quantum engineer's guide to superconducting qubits,” Applied Physics Reviews, vol. 6, June 2019.
[3] D. Deutsch and R. Jozsa, “Rapid solution of problems by quantum computation,” Proceedings: Mathematical and Physical Sciences, vol. 439, no. 1907, pp. 553–558, 1992.
[4] P. Shor, “Algorithms for quantum computation: discrete logarithms and factoring,” in Proceedings 35th Annual Symposium on Foundations of Computer Science, pp. 124–134, 1994.
[5] D. Kielpinski, C. Monroe, and D. J. Wineland, “Architecture for a large-scale ion-trap quantum computer,” Nature, vol. 417, pp. 709–711, jun 2002.
[6] N.-M. Park, C.-J. Choi, T.-Y. Seong, and S.-J. Park, “Quantum confinement in amorphous silicon quantum dots embedded in silicon nitride,” Phys. Rev. Lett., vol. 86, pp. 1355–1357, Feb 2001.
[7] L. Childress and R. Hanson, “Diamond nv centers for quantum computing and quantum networks,” MRS Bulletin, vol. 38, pp. 134–138, feb 2013.
[8] F. Arute, K. Arya, and R. B. et al., “Quantum supremacy using a programmable superconducting processor,” Nature, vol. 574, pp. 505–510, OCT 2019.
[9] Y. Wu, W.-S. Bao, and S. e. a. Cao, “Strong quantum computational advantage using a superconducting quantum processor,” Phys. Rev. Lett., vol. 127, p. 180501, Oct 2021.
[10] A. Blais, A. L. Grimsmo, S. M. Girvin, and A. Wallraff, “Circuit quantum electrodynamics,” Rev. Mod. Phys., vol. 93, p. 025005, May 2021.
[11] G. Popkin, “Quest for qubits,” Science, vol. 354, pp. 1090–1093, 12 2016.
[12] J. Q. You and F. Nori, “Atomic physics and quantum optics using superconducting circuits,” Nature, vol. 474, p. 589–597, June 2011.
[13] J. Koch, T. M. Yu, J. Gambetta, A. A. Houck, D. I. Schuster, J. Majer, A. Blais, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf, “Charge-insensitive qubit design derived from the cooper pair box,” Physical Review A, vol. 76, Oct. 2007.
[14] V. E. Manucharyan, J. Koch, L. I. Glazman, and M. H. DEVORET, “Fluxonium: Single cooper-pair circuit free of charge offsets,” Science, vol. 326, pp. 113–116, OCT 2009.
[15] A. Somoroff, Q. Ficheux, R. A. Mencia, H. Xiong, R. V. Kuzmin, and V. E. Manucharyan, “Millisecond coherence in a superconducting qubit,” 2021.
[16] L. B. Nguyen, Y.-H. Lin, A. Somoroff, R. Mencia, N. Grabon, and V. E. Manucharyan, “High-coherence fluxonium qubit,” Phys. Rev. X, vol. 9, p. 041041, Nov 2019.
[17] L. B. Nguyen, G. Koolstra, Y. Kim, A. Morvan, T. Chistolini, S. Singh, K. N. Nesterov, C. Jünger, L. Chen, Z. Pedramrazi, B. K. Mitchell, J. M. Kreikebaum, Shruti, D. I. Santiago, and I. Siddiqi, “Blueprint for a high-performance fluxonium quantum processor,” PRX Quantum, vol. 3, p. 037001, Aug 2022.
[18] J. Kelly, P. O’Malley, M. Neeley, H. Neven, and J. M. Martinis, “Physical qubit calibration on a directed acyclic graph,” 2018.
[19] P. V. Klimov, J. K. J. M. Martinis, and H. Neven, “The snake optimizer for learning quantum processor control parameters,” 2020.
[20] P. Groszkowski and J. Koch, “scqubits: a python package for superconducting qubits,” 2021.
[21] J. Béjanin, C. Earnest, Y. Sanders, and M. Mariantoni, “Resonant coupling parameter estimation with superconducting qubits,” PRX Quantum, vol. 2, p. 040343, Nov 2021.
[22] E. Genois, J. A. Gross, A. Di Paolo, N. J. Stevenson, G. Koolstra, A. Hashim, I. Siddiqi, and A. Blais, “Quantum-tailored machine-learning characterization of a superconducting qubit,” PRX Quantum, vol. 2, p. 040355, Dec 2021.
[23] S. Qin, M. Cramer, C. P. Koch, and A. Serafini, “Optimal control for Hamiltonian parameter estimation in non-commuting and bipartite quantum dynamics,” SciPost Phys., vol. 13, p. 121, 2022.
[24] J. Suzuki, “Parameter estimation of qubit states with unknown phase parameter,” International Journal of Quantum Information, vol. 13, no. 01, p. 1450044, 2015.
[25] B. Josephson, “Possible new effects in superconductive tunnelling,” Physics Letters, vol. 1, no. 7, pp. 251–253, 1962.
[26] J. M. Martinis and K. Osborne, “Superconducting qubits and the physics of josephson junctions,” 2004.
[27] V. B. Braginsky and F. Y. Khalili, “Quantum nondemolition measurements: the route from toys to tools,” Reviews of Modern Physics, vol. 68, no. 1, p. 1, 1996.
[28] E. Jaynes and F. Cummings, “Comparison of quantum and semiclassical radiation theories with application to the beam maser,” Proceedings of the IEEE, vol. 51, no. 1, pp. 89–109, 1963.
[29] V. E. Manucharyan, Superinductance. PhD thesis, Yale University, New Haven, CT, US, 2012.
[30] J. R. Koza, F. H. Bennett, D. Andre, and M. A. Keane, Automated Design of Both the Topology and Sizing of Analog Electrical Circuits Using Genetic Programming, pp. 151–170. Dordrecht: Springer Netherlands, 1996.
[31] E. Alpaydin, Introduction to Machine Learning. MIT Press, 4th ed., 2020.
[32] R. I. Mukhamediev, Y. Popova, Y. Kuchin, E. Zaitseva, A. Kalimoldayev, A. Symagulov, V. Levashenko, F. Abdoldina, V. Gopejenko, K. Yakunin, and E. Muhamed, “Review of Artificial Intelligence and Machine Learning Technologies: Classification, Restrictions, Opportunities and Challenges,” Mathematics, vol. 10, pp. 1–25, July 2022.
[33] J. Hu, H. Niu, J. Carrasco, B. Lennox, and F. Arvin, “Voronoi-based multi-robot autonomous exploration in unknown environments via deep reinforcement learning,” IEEE Transactions on Vehicular Technology, vol. 69, no. 12, pp. 14413–14423, 2020.
[34] M. Jordan and T. Mitchell, “Machine learning: Trends, perspectives, and prospects,” Science (New York, N.Y.), vol. 349, pp. 255–60, 07 2015.
[35] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521, no. 7553, p. 436, 2015.
[36] K. O’Shea and R. Nash, “An introduction to convolutional neural networks,” 2015.
[37] R. M. Schmidt, “Recurrent neural networks (rnns): A gentle introduction and overview,” 2019.
[38] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need,” 2023.
[39] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo, “Swin transformer: Hierarchical vision transformer using shifted windows,” 2021.
[40] Z. Liu, H. Hu, Y. Lin, Z. Yao, Z. Xie, Y. Wei, J. Ning, Y. Cao, Z. Zhang, L. Dong, F. Wei, and B. Guo, “Swin transformer v2: Scaling up capacity and resolution,” 2022.
[41] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Transactions on Knowledge and Data Engineering, vol. 22, no. 10, pp. 1345–1359, 2010.
[42] F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, H. Xiong, and Q. He, “A comprehensive survey on transfer learning,” 2020.
[43] C. Tan, F. Sun, T. Kong, W. Zhang, C. Yang, and C. Liu, “A survey on deep transfer learning,” 2018.
[44] L. B. Nguyen, Toward the Fluxonium Quantum Processor. PhD thesis, University of Maryland, 2020.
[45] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are universal approximators,” Neural Netw., vol. 2, p. 359–366, jul 1989.
[46] N. Rogge, “swinv2-tiny-patch4-window16-256.” https://huggingface.co/microsoft/swinv2-tiny-patch4-window16-256, 2022.
[47] K. Mishchenko and A. Defazio, “Prodigy: An expeditiously adaptive parameter-free learner,” arXiv preprint arXiv:2306.06101, 2023.
[48] G. P. Fedorov and A. V. Ustinov, “Automated analysis of single-tone spectroscopic data for cqed systems,” 2019.
[49] G. Loy and J.-O. Eklundh, “Detecting symmetry and symmetric constellations of features,” vol. 2, pp. 508–521, 05 2006.
[50] Y. Jing, “Detect bilateral symmetry object within image, mathematical method using opencv.” https://github.com/YiranJing/MirrorSymmetry?tab=readme-ov-file.
[51] I. V. Pechenezhskiy, R. A. Mencia, L. B. Nguyen, Y.-H. Lin, and V. E. Manucharyan, “The superconducting quasicharge qubit,” Nature, vol. 585, no. 7825, pp. 368–371, 2020.
[52] A. Gyenis, P. S. Mundada, A. Di Paolo, T. M. Hazard, X. You, D. I. Schuster, J. Koch, A. Blais, and A. A. Houck, “Experimental realization of a protected superconducting circuit derived from the 0–π qubit,” PRX Quantum, vol. 2, p. 010339, Mar 2021.