簡易檢索 / 詳目顯示

研究生: 鄭宇倢
Cheng, Yu-Jie
論文名稱: 木材彈性模數光學掃描方法量測之研究
DETERMINATION OF MODULUS OF ELASTICITY OF TIMBER BY USING OPTICAL SCANNER METHOD
指導教授: 王偉中
Wang, Wei-Chung
口試委員: 卓志隆
Cho, Chih-Lung
張禎元
Chang, Jen-Yuan
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2019
畢業學年度: 108
語文別: 中文
論文頁數: 139
中文關鍵詞: 管胞效應彈性模數晚材率柳杉抗彎實驗
外文關鍵詞: Tracheid Effect, Modulus of Elasticity, Proportion of Latewood, Cryptomeria japonica, Bending Test
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究應用管胞效應與自行架設之光學模組,開發一套光學非接觸式木材纖維量測系統,此系統藉由光學掃描方法掃描試片弦切面與徑切面以預測木材彈性模數(Modulus of Elasticity, MOE),本研究同時探討試片橫切面晚材率對於預測木材MOE之影響。
    本研究以木材纖維量測系統預測柳杉無節材與含節點試片之MOE,並以抗彎實驗量測試片之實驗MOE,由此驗證木材纖維量測系統預測MOE之正確性,結果顯示木材纖維量測系統預測MOE與抗彎實驗MOE有相同之趨勢,得以驗證本系統之正確性,突破以往使用接觸式方法量測木材MOE之限制,達到非接觸式方法預測木材MOE之目標。


    In this thesis, an optical system was developed based on the tracheid effect and the self-constructed optical setup to measure the fiber orientation of timber. By using the developed optical system to scan both tangential and radial surfaces, both local and global modulus of elasticity (MOE) of timber can be predicted. Moreover, the measurement of proportion of latewood of the cross-section was used to investigate its effect of predicting MOE.
    In this thesis, the specimens adopted were the clear wood and the wood with knot of Cryptomeria japonica to predict the MOE by the optical system. To verify the predicted MOE result, a bending test was also conducted to measure the MOE of specimens. The results show that local MOE profiles along longitudinal direction obtained from optical scanner and bending test have the same tread. In the past, almost all MOEs were determined by the contact method. By using the non-contact method of the optical system, the MOEs can be predicted successfully.

    一、簡介------------------------------------------1 1.1 研究動機--------------------------------------1 1.2 研究目的--------------------------------------3 1.3 研究流程--------------------------------------3 二、文獻回顧--------------------------------------5 2.1 木材簡介--------------------------------------5 2.2 木材品質判定方法-------------------------------8 2.3 管胞效應--------------------------------------9 三、實驗原理--------------------------------------12 3.1橢圓方程式-------------------------------------12 3.2 木材彈性模數----------------------------------13 3.2.1平面內及平面外纖維角度與木材MOE之關係----------13 3.2.2 晚材率與木材彈性模數之關係-------------------20 3.2.3 平面內纖維角度與木材剛性之關係---------------23 3.2.4 局部彈性模數與全域彈性模數-------------------23 3.3抗彎機械應力分等-------------------------------25 四、實驗程序--------------------------------------29 4.1 木材纖維量測系統之研發-------------------------29 4.1.1 光源與相機選用程序---------------------------29 4.1.2 光學架設模組--------------------------------29 4.1.3 三軸位移平臺--------------------------------30 4.1.4 數位影像分析--------------------------------30 4.2 實驗樹種與樣本--------------------------------31 4.3 纖維方向檢測方法------------------------------31 4.3.1 平面內纖維角度檢測--------------------------32 4.3.2 平面外纖維角度檢測--------------------------32 4.4 實驗量測程序----------------------------------33 4.5靜態抗彎實驗程序-------------------------------35 五、結果與討論------------------------------------37 5.1 木材纖維量測系統開發--------------------------37 5.1.1 光源與相機選用------------------------------37 5.1.2 影像擷取與平臺位移程式----------------------38 5.1.3 數位影像分析結果----------------------------38 5.1.4 彈性模數計算程式----------------------------39 5.2 纖維角度檢測結果------------------------------39 5.2.1 平面內纖維角度檢測結果----------------------39 5.2.2 平面外纖維角度檢測結果----------------------40 5.3 橫切面之晚材率-------------------------------42 5.4 木材纖維量測系統掃描結果----------------------43 5.4.1 含兩節點試片木材纖維量測系統掃描結果---------43 5.4.2 無節材試片木材纖維量測系統掃描結果-----------45 5.4.3 單一節點試片木材纖維量測系統掃描結果---------46 5.5 靜態抗彎實驗結果-----------------------------47 5.5.1 含兩節點試片靜態抗彎實驗結果----------------47 5.5.2 無節材試片靜態抗彎實驗結果------------------48 5.5.3 單一節點試片靜態抗彎實驗結果----------------49 5.6 比較木材纖維量測系統掃描結果與靜態抗彎實驗結果--50 5.6.1 含兩節點試片掃描結果與抗彎實驗結果-----------50 5.6.2 無節材試片掃描結果與抗彎實驗結果-------------51 5.6.3 單一節點試片掃描結果與抗彎實驗結果-----------52 六、結論與未來展望--------------------------------53 6.1 結論-----------------------------------------53 6.2 未來展望-------------------------------------54 七、參考文獻-------------------------------------56

    [1] S. Gagnon, E. M. Bilek, L. Podesto, and P. Crespell, CLT Handbook: Cross-laminated Timber, U. S. Edition, FPInnovations, Quebec, Canada, 2013.
    [2] S. Y. Wang, J. H. Chen, M. J. Tsai, C. J. Lin, and T. H. Yang, “Grading of Softwood Lumber Using Non-Destructive Techniques,” Journal of Materials Processing Technology, Vol. 208, pp. 149-158, 2008.
    [3] Website:https://www.tfri.gov.tw
    [4] “木材抗彎試驗法”,CNS 454,中華民國國家標準,2013
    [5] “木材平行纖維方向剪力強度試驗法”,CNS 455,中華民國國家標準,2013
    [6] “木材衝擊抗彎強度試驗法”,CNS 457,中華民國國家標準,2013
    [7] Website:https://woodeye.com
    [8] Website:http://www.ni.com/zh-tw.html
    [9] Website:http://sine.ni.com/psp/app/doc/p/id/psp-357
    [10] Website:https://www.mathworks.com/
    [11] L. A. Jozsa, and G. R. Middleton, A Discussion of Wood Quality Attributes and Their Practical Implications, Canada - British Columbia Partnership Agreement on Forest Resource Development, Special Publication No. SP-34, Vancouver, Canada, 1994.
    [12] A. L. Shigo, A New Tree Biology - Facts, Photos, and Philosophies on Trees and Their Problems and Proper Care, Second Edition, Shigo and Trees Associates, Snohomish, WA, U.S.A., 1989.
    [13] Website:https://en.wikipedia.org/wiki/Softwood
    [14] “Timber Structures – Strength Graded Structural Timber with Rectangular Cross Section,” DIN EN 14081-1, European Committee for Standardization, 2011.
    [15] M. Lukacevic, J. Füssl, and J. Eberhardsteiner, “Discussion of Common and New Indicating Properties for the Strength Grading of Wooden Boards,” Wood Science and Technology, Vol. 49, pp. 551-576, 2015.
    [16] C. J. Johansson, J. Brundin, and R. Gruber, Stress Grading of Swedish and German Timber - a Comparison of Machine Stress Grading and Three Visual Grading Systems, Report No. 1992:23, Swedish National Testing and Research Institute, Stockholm, Sweden, 1992.
    [17] P. Castéra, C. Faye, and A. E. Ouadrani, “Prevision of the Bending Strength of Timber with a Multivariate Statistical Approach,” Annales of Forest Science, Vol. 53, pp. 885-896, 1996.
    [18] P. Glos, and N. Burger, “Maschinelle Sortierung Von Frisch Eingeschnittenem Schnittholz (Machine Strength Grading of Green Sawn Timber),” Holz als Roh- und Werkstoff, Vol. 56, pp. 319-329, 1998.
    [19] D. Larsson, S. Ohlsson, M. Perstorper, and J. Brundin, “Mechanical Properties of Sawn Timber from Norway Spruce,” Holz als Roh- und Werkstoff, Vol. 56, pp. 331-338, 1998.
    [20] Y. C. Lei, S. Y. Zhang, and Z. Jiang, “Models for Predicting Lumber Bending MOR and MOE Based on Tree and Stand Characteristics in Black Spruce,” Wood Science and Technology, Vol. 39, pp. 37-47, 2005.
    [21] R. Steiger, and M. Arnold, “Strength Grading of Norway Spruce Structural Timber: Revisiting Property Relationships Used in EN 338 Classification System,” Wood Science and Technology, Vol. 43, pp. 259-278, 2008.
    [22] F. Divos, and S. Kiss, “Strength Grading of Structural Lumber by Portable Lumber Grading - Effect of Knots,” The Future of Quality Control for Wood & Wood Products - The Final Conference of The European Cooperation in Science and Technology (COST) Action E53, Edinburgh, U. K., 2010.
    [23] G. Roblot, L. Bléron, F. Mériaudeau, and R. Marchal, “Automatic Computation of the Knot Area Ratio for Machine Strength Grading of Douglas-fir and Spruce Timber,” European Journal of Environmental and Civil Engineering, Vol. 14, pp. 1317-1332, 2010.
    [24] A. Olsson, J. Oscarsson, M. Johansson, and B. Källsner, “Prediction of Timber Bending Strength on Basis of Bending Stiffness and Material Homogeneity Assessed from Dynamic Excitation,” Wood Science and Technology, Vol. 46, pp. 667-683, 2011.
    [25] A. Ranta-Maunus, J. Denzler, and P. Stapel, Strength of European Timber, Part 2 - Properties of Spruce and Pine Tested in Gradewood Project, Report No. VTT 179, VTT Technical Research Centre of Finland, Espoo, Finland, 2011.
    [26] A. Olsson, J. Oscarsson, E. Serrano, B. Källsner, M. Johansson, and B. Enquist, “Prediction of Timber Bending Strength and In-Member Cross-Sectional Stiffness Variation on the Basis of Local Wood Fibre Orientation,” European Journal of Wood and Wood Products, Vol. 71, pp. 319-333, 2013.
    [27] A. Y. Elghazouli, Seismic Design of Buildings to Eurocode 8, Second Edition, CRC Press, Boca Raton, Florida, U. S. A., 2017.
    [28] J. Nyström, “Automatic Measurement of Fiber Orientation in Softwoods by Using the Tracheid Effect,” Computers and Electronics in Agriculture, Vol. 41, pp. 91-99, 2003.
    [29] J. Zhou, and J. Shen, “Ellipse Detection and Phase Demodulation for Wood Grain Orientation Measurement Based on the Tracheid Effect,” Optics and Lasers in Engineering, Vol. 39, pp. 73-89, 2003.
    [30] M. H. Zimmermann, “Conducting Units: Tracheids and Vessels,” Xylem Structure and the Ascent of Sap, pp. 4-20, Springer Berlin Heidelberg, Heidelberg, Berlin, Germany, 1983.
    [31] S. P. Simonaho, and R. Silvennoinen, “Sensing of Wood Density by Laser Light Scattering Pattern and Diffractive Optical Element Based Sensor,” Journal of Optical Technology, Vol. 73, pp. 170-174, 2006.
    [32] E. Cuevas, D. Zaldívar, and M. Perez-Cisneros, Applications of Evolutionary Computation in Image Processing and Pattern Recognition, Springer International Publishing, Cham, Switzerland, 2016.
    [33] W. Y. Wu, and M. J. Wang, “Elliptical Object Detection by Using Its Geometric Properties,” Pattern Recognition, Vol. 26, pp. 1499-1509, 1993.
    [34] H. K. Yuen, J. Illingworth, and J. Kittler, “Detecting Partially Occluded Ellipses Using the Hough Transform,” Image and Vision Computing, Vol. 7, pp. 31-37, 1989.
    [35] M. Hu, Studies of the Fibre Direction and Local Bending Stiffness of Norway Spruce Timber: For Application on Machine Strength Grading, Doctoral Thesis, Linnaeus University Press, Växjö, Sweden, 2018.
    [36] J. Bodner, M. G. Schlag and G. Grull, “Fracture Initiation and Progress in Wood Specimens Stressed in Tension – Part I. Clear Wood Specimens Stressed Parallel to the Grain,” Holzforschung, Vol. 51, pp. 179-184, 1997.
    [37] J. Bodner, M. G. Schlag and G. Grull, “Fracture Initiation and Progress in Wood Specimens Stressed in Tension – Part II. Compression Wood Specimens Stressed Parallel to the Grain,” Holzforschung, Vol. 51, pp. 571-576, 1997.
    [38] J. Bodner, M. G. Schlag and G. Grull, “Fracture Initiation and Progress in Wood Specimens Stressed in Tension – Part III. Clear Wood Specimens with Various Slopes of Grain,” Holzforschung, Vol. 52, pp. 95-101, 1998.
    [39] J. Zhu, N. Tadooka, K. Takata and A. Koizumi, “Growth and Wood Quality of Sugi (Cryptomeria japonica) Planted in Akita Prefecture (II). Juvenile/Mature Wood Determination of Aged Trees,” Journal of Wood Science, Vol. 51, pp. 95-101, 2005.
    [40] J. Bodig and B. A. Jayne, “Chapter 3.5: Elasticity of Composites,” Mechanics of Wood and Wood Composites, New York, U. S. A., 1982.
    [41] T. Y. Kuo and W. C. Wang, “Determination of Elastic Properties of Latewood and Earlywood by Digital Image Analysis Technique,” Wood Science and Technology, Vol. 53, pp. 559-577, 2019.
    [42] T. Kubo and S. Jyodo: “Some Characteristics of the Annual Ring Structure Related to Wood Density Variation in Sugi (Cryptomeria japonica),” Mokuzai Gakkaishi, Vol. 42, pp. 1156-1162, 1996.
    [43] I. M. Daniel and O. Ishai, “Engineering Mechanics of Composite Materials,” pp. 2, Oxford University, Oxford, U. K.,1994.
    [44] G. Y. Jeong and M. J. Park: “Evaluate Orthotropic Properties of Wood Using Digital Image Correlation,” Construction and Building Materials, Vol. 113, pp. 864-869, 2016.
    [45] Mork E., “Der Qualitat des Fichenholzes unter besonderer Rucksichtnahme auf Shief - und Papierholz,” Papierfabrikant (Der Papier Fabrikant), Vol. 26, pp. 741-747, 1928.
    [46] M. Hu, Local Variation in Bending Stiffness in Structural Timber of Norway Spruce: For the Purpose of Strength Grading, Master Thesis, Department of Building Technology, Linnaeus University, Växjö, Sweden, 2014.
    [47] Y. Sun, J. H. Pang, C. K. Wong, and F. Su, “Finite Element Formulation for a Digital Image Correlation Method,” Applied Optics, Vol. 44, pp. 7357-7363, 2005.
    [48] C. J. Johansson, “Chapter 3: Grading of Timber with Respect to Mechanical Properties,” Timber Engineering, Edited by S. Thelandersson and H. J. Larsen, Wiley, Chichester, England, 2003.
    [49] “框組壁工法結構用針葉樹框組材及指接材之機械應力分等”,CNS 14633,中華民國國家標準,2019
    [50] E. Borgström and R. Karlsson, “Structural Aspects of Timber Construction,” Design of Timber Structures, Edited by E. Borgström, Vol. 1, Swedish Forest Industries Federation, Stockholm, Sweden, 2016.
    [51] “Standard Test Methods of Static Tests of Lumber in Structural Sizes,” ASTM D198-15, The American Society for Testing Material International, West Conshohocken, PA, U. S. A., 2015.
    [52] Website:https://www.astm.org/
    [53] A. Briggert, M. Hu, A. Olsson and J. Oscarsson, “Evaluation of Three Dimensional Fibre Orientation in Norway Spruce Using a Laboratory Laser Scanner,” World Conference on Timber Engineering, Vienna, Austria, 2016.
    [54] Website:https://en.ids-imaging.com/home.html
    [55] Website:https://en.ids-imaging.com/store/ui-3250cp-rev-2.html
    [56] Website:https://en.ids-imaging.com/store/ui-3360cp-rev-2.html
    [57] 康文譯,“應用數位相位移式陰影雲紋法於透明材料之切面形貌量測”,國立清華大學動力機械工程學系碩士論文,2014
    [58] “木材之物理與強度試驗之取樣方法與一般要求” ,CNS 450,中華民國國家標準,2013
    [59] Website:http://www.hungta.com/tw/
    [60] “針葉樹結構用製材” ,CNS 14630,中華民國國家標準,2017

    QR CODE