研究生: |
楊氏紅粉 Duong Thi Hong Phan |
---|---|
論文名稱: |
Morphological Control of Single-Crystalline Silicon Nanowire Array by Response Surface Methodology 以反應曲面方式控制矽奈米線形貌 |
指導教授: |
嚴大任
Yen, Ta-Jen |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 奈米工程與微系統研究所 Institute of NanoEngineering and MicroSystems |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 英文 |
論文頁數: | 66 |
中文關鍵詞: | Silicon nanowires |
外文關鍵詞: | Silicon nanowires |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
One dimensional silicon nanostructures have attracted remarkable attentions due to their unique electronic, optoelectronic and thermal properties [1]. Recently, silicon nanowires (SiNWs) become the promising architecture in the present miniaturization of silicon-based devices, enabling many potential applications such as field-effect transistors (FET) [2], optoelectronics [3] and solar cells [3, 4]. In fact, the most crucial step to address the practical applications based on SiNWs is the control over dimensions, crystallographic orientation and doping level for the formation of SiNWs. These issues remain particularly challenging for constructing the complex SiNW- based devices [8] or integration of multifunctional elements [9], and one promising solution is the controlled synthesis of ultra-long SiNWs with uniform structure and properties which has been reported by W. Park et al [10]. So far, great efforts have been made to fabricate the ultra-long SiNWs, including thermal evaporation [11] and vapor- liquid- solid (VLS) growth [10]. Nevertheless, those aforementioned approaches involve serve vacuum condition, high process temperature and preparation of catalytic materials, leading the entire processes to be quite expensive and complex [10, 11] and incapable of fabricating a large area of well- aligned SiNW arrays.
As a consequence, we report the fabrication of single crystalline SiNW arrays with uniform length up to 450 μm via modified electroless metal deposition (EMD) method [12]. The utilization of conventional EMD method to fabricate ordered SiNW arrays is rather simple and inexpensive, in which the entire processes are carried out by mean of immersing silicon wafer into HF/ AgNO3 electrolyte solution at near room temperature. Nevertheless, we find that the succeeding formation of SiNWs via typical EMD approach is prohibited from the abundant Ag dendrites covering on the surface of SiNWs, impeding the controllability of SiNWs lengths over 250 μm [13-17]. To overcome it, the diluted HNO3 solution is introduced in EMD method to render the continuity of galvanic reaction, enabling the fabrication of wafer- scale well- aligned SiNW arrays with desired length ranging from several up to hundreds micrometers and even approaching to the thickness of used Si substrate
Indeed, the diameter of formed Si nanowire cannot be adjusted by using the conventional EMD method because multiple process factors are involved simultaneously in its galvanic reaction, so that their diameter has a wide distribution from 10 to 500 nm. Besides, SiNW-based structures are widely employed in diverse field and the high performance devices of SiNW are crucial to its diameter, especially the electrical and optical properties of SiNWs are strongly size dependent. Recently, researchers are effortfully searching for the appropriate diameter range of SiNWs to attain the corresponding optimal applications. Specifically, SiNWs smaller than 100 nm in diameter may be used in high-speed quantum-wire field effect transistors and light-emitting devices with extremely low power consumption [18], and SiNWs with width <150 nm are virtually sensitive to detect threshold shifts between buffer solutions of different pH [19]. On the contrary, the unique property such as, the independence of elastic modulus from their structure diameter [20] and a polarization-independent response in the building block for photovoltaic systems [21] are also exhibited if the diameter larger than 100 nm. In general, an average SiNW diameter of approximately 100 nm achieves satisfactorily their properties as mention above. Therefore, we apply Response Surface Methodology (RSM), a collection of statistical and mathematical techniques, for finding out the optimization of the response with the lowest standard deviation in order to fabricate 1D Silicon structures with 100 nm in diameter.
1 D. P. Yu, Z. G. Bai, J. J. Wang, Y. H. Zou, W. Qian, J. S. Fu, H. Zhang, Y. Ding, G. C. Xiong, L. P. You, S. Q. Peng, Phys. Rev. B 59, R2498 (1999).
2 Jeong. Y, Miyaji. K, Saraya. T et al, Journal of Applied Physics 105 (2009).
3 Zhou. XT, Hu. JQ, Li. CP et al, Chemical Physics Letters 369, 220 (2003).
4 Luo. LB, Jie. JS, Zhang. WF et al, Applied Physics Letters 94 (2009).
5 Muskens. OL, Diedenhofen. SL, Van Weert MHM et al, Advanced Functional Materials 18, 1039 (2008).
6 A. I. Boukai, Y. Bunimovich, J. T. Kheli, J. K. Yu, W. A. Goddard, and J. R. Health, Nature 451, 168 (2008).
7 Hochbauml. A. I, Chen. R, Delgado. R. D, Liang. W, Gamett. E. C, Najarian. M, Majumdar. A, and Yang. P, Nature 451, 163 (2008).
8 Huang Y., Duan X. Cui Y., Lauhon L., Kim K. And Lieber C. M., Science 294, 1313 (2001).
9 Zheng G., Patolsky F., Cui Y., Wang W. U. and Lieber C. M., Nat. Biotechnol., 23, 1294 (2005).
10 W. II Park, G. Zheng, X. Jiang, B. Tian, and C. M. Lieber, Nano Lett. 8, 3004 (2008).
11 Shi W. S., Peng H. Y., Zheng Y. F., Wang N., Shang N. G., Pan Z. W., Lee C. S. and Lee S. T., Adv. Mater 12, 1343 (2000).
12 Peng K. Q., Fang H., Hu J. J., Wu Y., Zhu J., Yan Y. J. and Lee S. T., Chem. Eur. J. 12, 7942 (2006).
13 Peng K. Q., Yan Y. J., Gao S. P. and Zhu J., Adv. Mater. 17, (2007).
14 Chen C. Y., Wu C. S., Chou C. J. and Yen T. J., Adv. Mater. 20, 13811 (2008).
15 Peng K. Q., Yan Y. J., Gao S. P. and Zhu J., Adv. Mater. 14, 1164 (2002).
16 Peng K. Q., Hu J. J., Yan Y. J., Wu Y., Fang H., Xu Y., Lee S. T. and Zhu J., Adv. Funct. Mater. 16, 387 (2006).
17 Peng K. Q., Fang H., Hu J. J., Wu Y., Zhu J., Yan Y. J. and Lee S. T., Chem. Eur. J. 12, 7942 (2006).
18 T. Qiu, X. L. Wu, G. G. Sui, and Paul K. Chu, Journal of Electronic materials. 35, 10, 1879 (2006)
19 Niklas Elfstrom, Amelie Eriksson Karlstrom, and Jan Linnros, Nano Lett. 7, 9, 2608-2612 (2007).
20 Young-Soo Sohn, Jinsung Park, and Kilho Eom, Nanoscale Res Lett. 5, 211-216 (2010).
21 Linyou Cao, Fengyu Fan, and Mark L. Brongersma, Nano Lett. 10, 439-445 (2010)
22 E. Leobandung, L. T. Guo, Y. Wang, S. Y. Chou, Appl. Phys. Lett. 67, 938 (1995)
23 J. Westwater, D. P. Gosain, S. Tomiya, S. Usui, H. Ruda, J. Vac, Sci. Technol. B 15, 554 (1997)
24 A. M. Movales, C. M. Lieber, Science. 279, 208 (1998)
25 N. Wang, Y. F. Zhang, Y. H. Tang, C.S. Lee, S. T. Lee, Appl. Phys. Let. 73, 3902 (1998)
26 D. P. Yu, Z. G. Bai, Y. Ding, Q. L. Hang, H. Z. Zhang, J. J. Wang, Y. H. Zou, W. Qian, G. C. Xiong, H. T. Zhou, S. Q. Feng, Appl. Phys. Lett. 72, 3458 (1998)
27 Y. F. Zhang, Y. H. Tang, C. Lam, N. Wang, C. S. lee, I. Bello, S. T. Lee, J. Cryst. Growth. 212, 115 (2000)
28 J. D. Holmes, K. P. Johnston, R. C. Doty, B. A. Korgel, Science. 287, 1471 (2000)
29 Y. Cui, L. J. Lauhon, M. S. Gudiksen, J. F. Wang, C. M. Lieber, Appl. Phys. Let. 78, 2214 (2001)
30 A. Tao, F. Kim, C. Hess, j. Goldberger, R. he, Y. Sun, Y. Xia, P. Yang, Nano Lett. 3, 1229 (2003)
31 D. Whang, S. Jin, Y. Wu, C. M. Lieber, Nano Lett. 3, 1255 (2003)
32 Y. Cui, C. M. Lieber, Science. 291, 851 (2001)
33 X. Duan, Y. Huang, Y. Cui, J. Wang, C. M. Lieber, Nature. 409, 66 (2001)
34 Chia-Yun Chen, Chi-Sheng Wu, and Ta-Jen Yen, Adv. Mater. 20, 3811-3815 (2008).
35 Ellis, R. S. Wagner and W. C, Vapor-Liquid-Solid mechanism of single crystal growth. Appl. Phys. Lett. 4, 89 (1964)
36 Yang, Yiying Wu and Peidong, Direct Observation of Vapor- Liquid- Solid Nanowire Growth. J. Am. Chem. Soc. 123, 3165 (2001)
37 Trentler, Timothy J. et al., Solution- Liquid- Solid Growth of Crystalline III- V Semiconductors: An Anology to vapor- Liquid- Solid Growth, Science 270 (5243), 1791 (1995)
38 Lieber, Alfredo M. Morales and Charles M., A Laser Ablation Method for the synthesis of Crystalline Semiconductor nanowires. Science. 270, 208 (1998)
39 D. P. Fenga, Controlled growth of oriented amorphous solicon nanowires via a Solid- Liquid- solid (SLS) mechanism. Physica E 9, 305 (2001)
40 S. T. Lee, Y. F. Zhang, N. Wang, Y. H. Tang, I. Bello, amd C. S. Lee, Semiconductor nanowires from oxides. J. Mater. Res. 14, 4503 (1999)
41 R. Q. Zhang, T. S. Chu, H. F. Cheung, N. Wang, S. T. Lee, Mechanism of the oxide assisted nucleation and growth of Silicon nanostructures. Materials Science and Engineering. C 16, 31 (2001)
42 Rui- Qin Zang, Yeshayahu Lifshitz, and Shuit- Tong Lee, Oxide- Assisted Growth of Semiconducting Nanowires. Adv. Mater. 15, 635 (2003).
43 Shi, W. S. et al., Microstructures of gallium nitride nanowires synthesized by oxide- assisted method. Chemical Physics Letters. 345 (5-6), 377 (2001).
44 Xie, T. et al., Characterization and growth mechanism of germanium nitride nanowires prepared by an oxide- assisted method. Journal of Crystal growth. 283 (3-4), 286 (2005).
45 Shi, W. S. et al., A general synthetic route to III-V compound semiconductor nanowires. Advanced Materials 13 (8), 591 (2001).
46 Dinesh Kumar, Sanjay K. Srivastava and M. Husan, J. Nanopart Res. 10, 1007 (2009).