簡易檢索 / 詳目顯示

研究生: 李承晉
Lee, Cheng Chin
論文名稱: 以電化學雙電池模組促進分解氮氧化物與二氧化硫之實際應用性研究
A study of practical applications of promoted decomposition of nitrogen oxide and sulfur dioxide via a module of electrochemical double-cell
指導教授: 黃大仁
Huang, Ta Jen
口試委員: 葉君棣
呂世源
汪上曉
竇維平
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 116
中文關鍵詞: 電化學雙電池電觸媒蜂巢觸媒氮氧化物二氧化硫
外文關鍵詞: electrochemical double cell, electro-catalytic honeycomb, catalyst, nitrogen oxide, sulfur dioxide
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 引擎的技術不斷的進步,燃燒效率增加,產生更多氮氧化物廢氣,以及工廠廢氣中大量排放的二氧化硫廢氣,按照現有商業化技術皆沒有辦法完美的處理此兩樣化合物。而目前已經出現電催化處理氮氧化物之技術,且在相關理論與實驗皆以取得很大的成果,且利用電催化技術發展出來的陶瓷支撐電化學雙電池具有可以處理氮氧化物和硫氧化物的兩種功能,惟平板陶瓷材料無法大面積且大量的生產,且耗費材料成本巨大,因此,本研究之主要目的首先為利用陽極來當作支撐體,對於陽極支撐型電化學雙電池進行一系列活性測試,進而發展出電化學雙電池模組,參考製程至蜂巢觸媒轉化器,進行真實廢氣的催化效果測試。
    在電化學雙電池板實驗中,再次證實確實有二氧化硫和氮氧化物的處理效果,對於二氧化硫在不同氧濃度與溫度下的分解做出一系列結果,另外也將其規模擴大(scale-up)到蜂巢製程,發現其觸媒的單位面積反應速率可能會因為紊流(turbulent flow)而比平板效果更佳,另外呈現了在不同系統下的電觸媒蜂巢處理效果,其效果在不同的系統下都有選擇性觸媒還原的數十倍反應速率,證明其應用於業界的潛力。


    Because of the progress of technique of engine,there are more and more exhaust gas ,like NOx and SO2,discharged into the atmosphere.
    According to existing commercial technologies are no perfect way to deal with this different harmful compounds.Our group have developed the promoted nitrogen oxides decomposition technology since several years age and we made great achievements theoretically and experimentally.
    The use of electro-catalytic technology developed ceramic supported electrochemical double cell can handle nitrogen oxides and sulfur oxides at the same time.This study show that we can take advantage of the anode supported electrochemical double cell to treat NOx and SO2 greatly.
    Then,we scale up the double cell into electro-catalytic honeycomb(ECH) and use ECH to treat the exhaust gas of boiler and diesel engine.The result of the experiment show that the reaction rate of ECH can reach several times of reaction rate of SCR.This result demonstrate the potential to be applied to the industry.

    摘 要 II Abstract III 第一章 緒 論 1 第二章 文獻回顧 5 2-1. 氮氧化物的生成 5 2-2 氮氧化物排放與處理 7 2-2-1三相觸媒(three-way catalysts)還原氮氧化物 9 2-2-2選擇性觸媒還原法(selective catalytic reduction, SCR) 11 2-2-3氮氧化物儲存還原法( NOx Storage Reduction,NSR ) 13 2-3氮氧化物直接分解 15 2-3-1電化學還原法 15 2-3-2 SOFC處理NOx (SOFC-DeNOx) 17 2-3-3金屬氧化物催化分解氮氧化物 21 2-3-4氮氧化物於電觸媒陰極直接分解 25 2-4二氧化硫廢氣處理 34 2-4-1二氧化硫處理技術 34 2-4-2二氧化硫直接分解 38 2-5蜂巢狀觸媒結構(honeycomb) 41 2-5-1前言 41 2-5-2電解質的材料與燒結 42 第三章 研究構想 46 第四章 實驗方法與步驟 49 4-1. 實驗藥品 49 4-2. 粉體合成 52 4-2-1. NiO/YSZ陽極粉體合成 52 4-2-2 La0.6Sr0.4CoO3-δ (LSC)合成 52 4-3. 塗佈漿料合成 53 4-3-1. 平板用電解質漿料 53 4-3-2. 蜂巢電解質漿料 53 4-3-3. 平板用 GDC漿料 54 4-3-4. 蜂巢用 GDC漿料 55 4-5. 電觸媒蜂巢製作 61 4-5-1. 蜂巢陽極 61 4-5-2. 蜂巢電解質層製程 62 4-5-3. GDC層塗佈與燒結製程 63 4-5-4. 陰極層製程 65 4-5-5. 蜂巢還原與封裝製程 66 4-6. 實驗廢氣取樣系統 67 4-7. 實驗流程 70 第五章 實驗結果與討論 71 5-1. 電化學雙電池板(Electrochemical Double Cell plates,EDP) 71 5-1-1. 鑭鍶鈷(LSC)為EDP陰極材料行脫硝反應 72 5-1-2. 不同實驗參數對LSC-EDP的影響 74 5-2. 電化學雙電池板直接分解二氧化硫 85 5-2-1. 鑭鍶錳(LSM)為EDP陰極材料行脫硫反應 85 5-2-2. 不同實驗參數對LSM-EDP的影響 86 5-3. 電觸媒蜂巢ECH測試結果 95 5-3-1. 柴油引擎燃燒廢氣系統 95 5-3-2. 鍋爐燃燒廢氣系統 102 第六章 結 論 110 參 考 文 獻 113

    1. Pascal Granger, and Vasile I. Parvulescu, Catalytic NOx Abatement Systems for Mobile Sources: From Three-Way to Lean Burn after-Treatment Technologies. Chemical review, 2011. 111, p. 3155-2297.
    2. Y.B. Zeldovich, Acta Physicochim. URSS 21 (1946) p.577.
    3. I. Barin, O. Knacke, Thermochemical Properties of Inorganic
    Substances, Springer, Berlin, 1973, p. 505, 507, 584.
    4. D.R. Stull, E.F. Westrum Jr., G.C. Sinke, The Chemical
    Thermodynamics of Organic Compounds, Wiley, New York,
    1969, p. 232.
    5. Bosch, Hans, and Frans Janssen. Catalytic reduction of nitrogen oxides: A review on the fundamentals and technology. Elsevier, 1988.
    6. Sounak, Roy, M. S. Hegde, and Madras Giridhar. "Catalysis for NOx abatement." Applied Energy 86.11 (2009): 2283-2297.
    7. Parvulescu, V. I., P. Grange, and B. Delmon. "Catalytic removal of NO."Catalysis Today 46.4 (1998): 233-316
    8. Shelef, M. "Selective catalytic reduction of NOx with N-free reductants."Chemical Reviews 95.1 (1995): 209-225.
    9. Taylor, Kathleen C. "Nitric oxide catalysis in automotive exhaust systems."Catalysis Reviews—Science and Engineering 35.4 (1993): 457-481..
    10. Shelef, M., and G. W. Graham. "Why rhodium in automotive three-way catalysts?." Catalysis Reviews 36.3 (1994): 433-457..
    11. Olsson, L., Persson, H., Fridell, E., Skoglundh, M., & Andersson, B. (2001). A Kinetic Study of NO Oxidation and NO x Storage on Pt/Al2O3 and Pt/BaO/Al2O3. The Journal of Physical Chemistry B, 105(29), 6895-6906.


    12. Liu, Y., Hashimoto, S., Nishino, H., Takei, K., & Mori, M. (2007). Fabrication and characterization of a co-fired La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3− δ cathode-supported Ce 0.9 Gd 0.1 O 1.95 thin-film for IT-SOFCs. Journal of power sources, 164(1), 56-64.
    13. Takeuchi, Masahiko, and Shin'ichi Matsumoto. "NOx storage-reduction catalysts for gasoline engines." Topics in catalysis 28.1-4 (2004): 151-156..
    14. de Vooys, A.C.A., et al., Mechanisms of electrochemical reduction and oxidation of nitric oxide. Electrochimica Acta, 2004. 49(8): p. 1307-1314.
    15. Wachsman, E. D., Jayaweera, P., Krishnan, G., & Sanjurjo, A. (2000). Electrocatalytic reduction of NO x on La 1− x A x B 1− y B′ y O 3− δ: evidence of electrically enhanced activity. Solid State Ionics, 136, 775-782.
    16. Huang, T.-J., C.-Y. Wu, and Y.-H. Lin, Electrochemical Enhancement of Nitric Oxide Removal from Simulated Lean-Burn Engine Exhaust via Solid Oxide Fuel Cells. Environmental Science & Technology, 2011. 45(13): p. 5683-5688..
    17. Huang, T.-J. and I.C. Hsiao, Nitric oxide removal from simulated lean-burn engine exhaust using a solid oxide fuel cell with V-added (LaSr)MnO3 cathode. Chemical Engineering Journal, 2010. 165(1): p. 234-239.
    18. Hinshelwood,T.E.G.a.G.N.,The Catalytic Decomposition of Nitric Oxide at the Surface of Platimum.J. Chem. Soc.,1926.126:p.1709-1713
    19. Imanaka, N. and T. Masui,Advance in direct NOx decomposition catalysts.Applied Catalysis A:General,2012. 431-432(0):p.1-8
    20. Winter, E. R. S. "The catalytic decomposition of nitric oxide by metallic oxides."Journal of Catalysis 22.2 (1971): 158-170..
    21. Teraoka, Yasutake, Tomohiro Harada, and Shuichi Kagawa. "Reaction mechanism of direct decomposition of nitric oxide over Co-and Mn-based perovskite-type oxides." Journal of the Chemical Society, Faraday Transactions94.13 (1998): 1887-1891..
    22. Huang, T. J., Wu, C. Y., Chiang, D. Y., & Yu, C. C. (2012). Ambient temperature NOx emission control for lean-burn engines by electro-catalytic tubes. Applied Catalysis A: General, 445, p153-158..
    23. Huang, Ta-Jen, Chung-Ying Wu, and Yu-Hsien Lin. "Electrochemical enhancement of nitric oxide removal from simulated lean-burn engine exhaust via solid oxide fuel cells." Environmental science & technology 45.13 (2011): 5683-5688..
    24. Huang, T. J., Wu, C. Y., Chiang, D. Y., & Yu, C. C. (2012). NO x emission control for automotive lean-burn engines by electro-catalytic honeycomb cells. Chemical Engineering Journal, 203, 193-200..
    25. Huang, Ta-Jen, Chung-Ying Wu, and De-Yi Chiang. "Effect of H 2 O and CO 2 on NO x emission control for lean-burn engines by electrochemical-catalytic cells." Journal of Industrial and Engineering Chemistry 19.3 (2013): 1024-1030..
    26. J. Adlkofer, in Handbook of Heterogeneous Catalysis, edited by G. Ertl,
    H. Kno¨zinger, and J. Weitkamp ~Wiley-VCH, New York, 1997! Vol. 4, p.
    1776..
    27. A. C. Stern, R. W. Boubel, D. B. Turner, and D. L. Fox, Fundamentals of
    Air Pollution, 2nd ed. ~Academic, Orlando, FL, 1984
    28. A. Pie´plu, O. Saur, J.-C. Lavalley, O. Legendre, and C. Ne´dez, Catal. Rev. Sci. Eng. 40, 409 (1998)..
    29. K. C. Hass and W. F. Schneider, Phys. Chem. Chem. Phys. 1, 639 (1999).
    30. A. Tschope, W. Liu, M. Flytzani-Stephanopoulos, and J. Y. Ying, J.Catal. 157, 42 (1995).
    31. G. Centi, N. Passarini, S. Perathoner, and A. Riva, Ind. Eng. Chem.Res. 31, 1947 (1992).
    32. Srivastava, Ravi K., Wojciech Jozewicz, and Carl Singer. "SO2 scrubbing technologies: a review." Environmental Progress 20.4 (2001): 219-228..
    33. Yoo, Jin S., et al. "De-SOx catalyst: the role of iron in iron mixed solid solution spinels, MgO. cntdot. MgAl2-xFexO4." Industrial & engineering chemistry research 31.5 (1992): 1252-1258..
    34. Wang, J. A., et al. "Evaluation of crystalline structure and SO 2 storage capacity of a series of composition-sensitive De-SO 2 catalysts." Journal of Molecular Catalysis A: Chemical 194.1 (2003): 181-193..
    35. Rodas-Grapaín, Arturo, et al. "Catalytic properties of a CuO–CeO 2 sorbent-catalyst for de-SO x reaction." Catalysis today107 (2005): 168-174..
    36. Hibbert, D. Brynn, and Rosemary H. Campbell. "Flue gas desulphurisation: Catalytic removal of sulphur dioxide by carbon monoxide on sulphided La 1− x Srx CoO 3: I. Adsorption of sulphur dioxide, carbon monoxide and their mixtures." Applied catalysis 41 (1988): 273-287..
    37. Liu, Wei, Adel F. Sarofim, and Maria Flytzani-Stephanopoulos. "Reduction of sulfur dioxide by carbon monoxide to elemental sulfur over composite oxide catalysts." Applied Catalysis B: Environmental 4.2 (1994): 167-186..
    38. Tucker, Michael C. "Progress in metal-supported solid oxide fuel cells: A review." Journal of Power Sources 195.15 (2010): 4570-4582..
    39. Zhang, R., Villanueva, A., Alamdari, H., & Kaliaguine, S. (2006). Reduction of NO by CO over nanoscale LaCo 1− x Cu x O 3 and LaMn 1− x Cu x O 3 perovskites. Journal of Molecular Catalysis A: Chemical, 258(1), 22-34.
    40. Lee, Younki, and Gyeong Man Choi. "Ceria Film Supported on Ni-Fe Metal Film." ECS Transactions 25.2 (2009): 727-730..
    41. Hwang, C., Tsai, C. H., Lo, C. H., & Sun, C. H. (2008). Plasma sprayed metal supported YSZ/Ni–LSGM–LSCF ITSOFC with nanostructured anode. Journal of Power Sources, 180(1), 132-142.
    42. Park, Hyeon Cheol, and Anil V. Virkar. "Bimetallic (Ni–Fe) anode-supported solid oxide fuel cells with gadolinia-doped ceria electrolyte." Journal of Power Sources 186.1 (2009): 133-137..
    43. Kurokawa, Hideto, Kenichi Kawamura, and Toshio Maruyama. "Oxidation behavior of Fe–16Cr alloy interconnect for SOFC under hydrogen potential gradient." Solid State Ionics 168.1 (2004): 13-21..
    44. Tucker, Michael, et al. "Metal Supported SOFCs." ECS Transactions 7.1 (2007): 279-284..
    45. Han, M., Tang, X., Yin, H., & Peng, S. (2007). Fabrication, microstructure and properties of a YSZ electrolyte for SOFCs. Journal of Power Sources, 165(2), 757-763.
    46. Boger, Thorsten, Achim K. Heibel, and Charles M. Sorensen. "Monolithic catalysts for the chemical industry." Industrial & engineering chemistry research43.16 (2004): 4602-4611...
    47. Park, Hyeon Cheol, and Anil V. Virkar. "Bimetallic (Ni–Fe) anode-supported solid oxide fuel cells with gadolinia-doped ceria electrolyte." Journal of Power Sources 186.1 (2009): 133-137..
    48. Kurokawa, Hideto, Kenichi Kawamura, and Toshio Maruyama. "Oxidation behavior of Fe–16Cr alloy interconnect for SOFC under hydrogen potential gradient." Solid State Ionics 168.1 (2004): 13-21..
    49. Lee, Younki, and Gyeong Man Choi. "Ceria Film Supported on Ni-Fe Metal Film." ECS Transactions 25.2 (2009): 727-730..
    50. S.S.A. Syed-Hassan, C.-Z. Li / Applied Catalysis A: General 398 (2011) 187–194.
    51. 郭文碩,國立成功大學材料工程學系,碩士論文,2004.
    52. Boger, T.;Heibel,A. K.; Sorensen, C. M.; Ind. Eng. Chem. Res,2004,43,p.4602
    53. 江德一,國立清華大學化學工程學系,博士論文,2014

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE