研究生: |
高維廷 Kao, Wei-Ting |
---|---|
論文名稱: |
結合介電泳技術之肝癌實驗室晶片應用於藥物篩選之研究 Dielectrophoresis-based Liver Tumor Microenvironment Labchip for Drugs Applications |
指導教授: |
劉承賢
Liu, Cheng-Hsien |
口試委員: |
葉昭廷
Yeh, Chau-Ting 張晃猷 Chang, Hwan-You |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2023 |
畢業學年度: | 112 |
語文別: | 中文 |
論文頁數: | 90 |
中文關鍵詞: | 微機電系統 、介電泳技術 、藥物篩選平台 、肝癌 、細胞排列 |
外文關鍵詞: | MEMS system |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
肝癌,長期以來是影響人們深遠的一種疾病,因為肝癌在早期階段不易發現,在末期才會出現較為明顯的症狀,並且高機率會夾帶著許多的併發症,因此患者的壽命已所剩不多。由上述可知,治療肝癌一直是一項很艱難的議題,也會因每個病人的生理機制不同,對於藥物的反應也不同,所以在選擇肝癌的藥物上也是一大挑戰。
本研究針對肝癌的治療提出了一項具有創新性的實驗室晶片,該晶片旨在仿肝癌微環境,以更深入地研究這一複雜的疾病。透過運用微機電技術,我們所設計之晶片,能使藥物能夠自動形成組合,並流入細胞培養室,提供了一個嶄新的晶片,以探索不同藥物組合對於肝癌細胞的治療效果。為了貼近真實情況,我們利用介電泳技術,使肝癌細胞和纖維母細胞能夠以不同的比例組成,並排列特定的圖案,以模擬出腫瘤微環境的情況,也使用生物相容水膠材料GelMA,給予細胞生長的支架,使環境能仿三維結構,以接近人體環境。透過實驗結果的分析,我們發現透過藥物組合相較於單一藥物能展現出更好的毒殺效果,特別是由Cisplatin和5FU組成的藥物組合表現最為優異,細胞的生存率僅剩33%,因此可做為最佳藥物推薦組合。此外,我們發現到隨著纖維母細胞比例的增加,肝癌細胞會產生抗藥性之現象。
Hepatocellular carcinoma (HCC) is a pervasive and challenging disease that has had a significant impact on global health for an extended period. The insidious nature of HCC lies in its often-asymptomatic progression, leading to late-stage diagnosis when treatment options become limited. Consequently, finding effective therapeutic strategies for managing HCC remains an urgent priority in the field of oncology.
This study endeavors to develop an innovative drug screening platform tailored specifically for hepatocellular carcinoma. Utilizing cutting-edge microelectromechanical systems (MEMS) technology, a sophisticated biomedical microchip will be meticulously crafted. Our chip can allowing the combination of three different drugs to be directly delivered into the cell culture chamber. Furthermore, we employ dielectrophoresis to arrange fibroblast and cancer cells into specific patterns, simulating the tumor microenvironment's architecture. The fluorescent analysis will be utilized to quantify cell viability. The experimental results indicate that the drug combination of Cisplatin and 5FU exhibits the highest cytotoxicity against HCC cells, the cell viability is reduced to 33%. Additionally, an observation of increased fibroblast proportion leading to cancer cell resistance to the treatment was made.
[1] "台灣肝癌發生率下降,為何死亡率仍偏高?." https://www.healthnews.com.tw/article/54784
[2] "What is Microfluidics?" https://www.news-medical.net/life-sciences/What-is-Microfluidics.aspx
[3] "MEMS Packaging for High Volume Products." https://embeddedcomputing.com/technology/analog-and-power/analog-semicundoctors-sensors/mems-packaging-for-high-volume-products
[4] "Lobules of liver." https://en.wikipedia.org/wiki/Lobules_of_liver
[5] "AboutRecent EditsGo ad-free Search Radiopaedia.org Liver lobules." [Online]. Available: https://radiopaedia.org/articles/liver-lobules?lang=us.
[6] "衛生福利部公布癌症發生資料." https://www.hpa.gov.tw/Pages/Detail.aspx?nodeid=4141&pid=12682
[7] "「腫瘤清除手術/腹腔溫熱化學治療」." https://www.cmuh-crs.com/%e8%85%b9%e8%85%94%e9%8f%a1%e6%89%8b%e8%a1%93.html
[8] "All-Party Parliamentary Group on Liver Health." http://www.appghep.org.uk/
[9] "肝癌." https://www.cgh.org.tw/ec99/rwd1320/category.asp?category_id=932
[10] J. J. Holster et al., "Hepatic arterial infusion pump chemotherapy for unresectable intrahepatic cholangiocarcinoma: a systematic review and meta-analysis," Annals of Surgical Oncology, vol. 29, no. 9, pp. 5528-5538, 2022.
[11] T. G. Ivanco, "Development and Validation of an Aeroelastic Ground Wind Loads Analysis Tool for Launch Vehicles," Virginia Tech, 2009.
[12] N. Li Jeon, H. Baskaran, S. K. Dertinger, G. M. Whitesides, L. Van De Water, and M. Toner, "Neutrophil chemotaxis in linear and complex gradients of interleukin-8 formed in a microfabricated device," Nature biotechnology, vol. 20, no. 8, pp. 826-830, 2002.
[13] P. J. Hung, P. J. Lee, P. Sabounchi, R. Lin, and L. P. Lee, "Continuous perfusion microfluidic cell culture array for high‐throughput cell‐based assays," Biotechnology and bioengineering, vol. 89, no. 1, pp. 1-8, 2005.
[14] R. J. Pomerantz and D. L. Horn, "Twenty years of therapy for HIV-1 infection," Nature medicine, vol. 9, no. 7, pp. 867-873, 2003.
[15] K. Lee, C. Kim, G. Jung, T. S. Kim, J. Y. Kang, and K. W. Oh, "Microfluidic network-based combinatorial dilution device for high throughput screening and optimization," Microfluidics and Nanofluidics, vol. 8, pp. 677-685, 2010.
[16] M. C. Liu and Y.-C. Tai, "A 3-D microfluidic combinatorial cell array," Biomedical microdevices, vol. 13, pp. 191-201, 2011.
[17] K. Lee, C. Kim, and K. W. Oh, "Single-Layered Microfluidic Network-Based Combinatorial Dilution for Standard Simplex Lattice Design," Micromachines, vol. 9, no. 10, p. 489, 2018.
[18] J. Sun, W. Liu, Y. Li, A. Gholamipour-Shirazi, A. Abdulla, and X. Ding, "An on-chip cell culturing and combinatorial drug screening system," Microfluidics and Nanofluidics, vol. 21, pp. 1-11, 2017.
[19] M. C. Liu, D. Ho, and Y.-C. Tai, "Monolithic fabrication of three-dimensional microfluidic networks for constructing cell culture array with an integrated combinatorial mixer," Sensors and Actuators B: Chemical, vol. 129, no. 2, pp. 826-833, 2008.
[20] C.-Y. Lee, W.-T. Wang, C.-C. Liu, and L.-M. Fu, "Passive mixers in microfluidic systems: A review," Chemical Engineering Journal, vol. 288, pp. 146-160, 2016.
[21] B. He, B. J. Burke, X. Zhang, R. Zhang, and F. E. Regnier, "A picoliter-volume mixer for microfluidic analytical systems," Analytical chemistry, vol. 73, no. 9, pp. 1942-1947, 2001.
[22] V. Mengeaud, J. Josserand, and H. H. Girault, "Mixing processes in a zigzag microchannel: finite element simulations and optical study," Analytical chemistry, vol. 74, no. 16, pp. 4279-4286, 2002.
[23] E. B. Cummings and A. K. Singh, "Dielectrophoresis in microchips containing arrays of insulating posts: theoretical and experimental results," Analytical chemistry, vol. 75, no. 18, pp. 4724-4731, 2003.
[24] J. D. Adams, U. Kim, and H. T. Soh, "Multitarget magnetic activated cell sorter," Proceedings of the National Academy of Sciences, vol. 105, no. 47, pp. 18165-18170, 2008.
[25] R. Tornay et al., "Dielectrophoresis-based particle exchanger for the manipulation and surface functionalization of particles," Lab on a Chip, vol. 8, no. 2, pp. 267-273, 2008.
[26] H. A. Pohl, "The motion and precipitation of suspensoids in divergent electric fields," Journal of applied Physics, vol. 22, no. 7, pp. 869-871, 1951.
[27] Z. R. Gagnon, "Cellular dielectrophoresis: Applications to the characterization, manipulation, separation and patterning of cells," Electrophoresis, vol. 32, no. 18, pp. 2466-2487, 2011.
[28] K. W. Wagner, "Erklärung der dielektrischen nachwirkungsvorgänge auf grund maxwellscher vorstellungen," Archiv für Elektrotechnik, vol. 2, no. 9, pp. 371-387, 1914.
[29] A. Irimajiri, T. Hanai, and A. Inouye, "A dielectric theory of “multi-stratified shell” model with its application to a lymphoma cell," Journal of theoretical biology, vol. 78, no. 2, pp. 251-269, 1979.
[30] J. Yao, G. Zhu, T. Zhao, and M. Takei, "Microfluidic device embedding electrodes for dielectrophoretic manipulation of cells‐A review," Electrophoresis, vol. 40, no. 8, pp. 1166-1177, 2019.
[31] B. Yafouz, N. A. Kadri, and F. Ibrahim, "Dielectrophoretic manipulation and separation of microparticles using microarray dot electrodes," Sensors, vol. 14, no. 4, pp. 6356-6369, 2014.
[32] Y. Huang, R. Holzel, R. Pethig, and X.-B. Wang, "Differences in the AC electrodynamics of viable and non-viable yeast cells determined through combined dielectrophoresis and electrorotation studies," Physics in Medicine & Biology, vol. 37, no. 7, p. 1499, 1992.
[33] D. R. Albrecht, G. H. Underhill, T. B. Wassermann, R. L. Sah, and S. N. Bhatia, "Probing the role of multicellular organization in three-dimensional microenvironments," Nature methods, vol. 3, no. 5, pp. 369-375, 2006.
[34] Y.-S. Chen et al., "Liver-lobule-mimicking patterning via dielectrophoresis and hydrogel photopolymerization," Sensors and Actuators B: Chemical, vol. 343, p. 130159, 2021.
[35] C.-T. Ho, R.-Z. Lin, W.-Y. Chang, H.-Y. Chang, and C.-H. Liu, "Rapid heterogeneous liver-cell on-chip patterning via the enhanced field-induced dielectrophoresis trap," Lab on a Chip, vol. 6, no. 6, pp. 724-734, 2006.
[36] Y. Yuan, Y.-C. Jiang, C.-K. Sun, and Q.-M. Chen, "Role of the tumor microenvironment in tumor progression and the clinical applications," Oncology reports, vol. 35, no. 5, pp. 2499-2515, 2016.
[37] E. Sahai et al., "A framework for advancing our understanding of cancer-associated fibroblasts," Nature Reviews Cancer, vol. 20, no. 3, pp. 174-186, 2020.
[38] The American Society of Health-System Pharmacists. "Cisplatin." https://www.drugs.com/monograph/cisplatin.html (accessed.
[39] R. Oun, Y. E. Moussa, and N. J. Wheate, "The side effects of platinum-based chemotherapy drugs: a review for chemists," Dalton transactions, vol. 47, pp. 6645-6653, 2018.
[40] D. Wang and S. J. Lippard, "Cellular processing of platinum anticancer drugs," Nature reviews Drug discovery, vol. 4, pp. 307-320, 2005.
[41] T. C. Johnstone, K. Suntharalingam, and S. J. Lippard, "The next generation of platinum drugs: targeted Pt (II) agents, nanoparticle delivery, and Pt (IV) prodrugs," Chemical reviews, vol. 116, pp. 3436-3486, 2016.
[42] S. Trzaska, "Cisplatin," Chemical & engineering news, vol. 83, p. 52, 2005.
[43] "化療藥品Fluorouracil." https://www.cmuh.cmu.edu.tw/HealthEdus/Detail?no=5034
[44] "化療藥品Mitoxantrone." https://www.cmuh.cmu.edu.tw/HealthEdus/Detail?no=5027
[45] F. P. Melchels, J. Feijen, and D. W. Grijpma, "A review on stereolithography and its applications in biomedical engineering," Biomaterials, vol. 31, no. 24, pp. 6121-6130, 2010.
[46] M. Sun, X. Sun, Z. Wang, S. Guo, G. Yu, and H. Yang, "Synthesis and properties of gelatin methacryloyl (GelMA) hydrogels and their recent applications in load-bearing tissue," Polymers, vol. 10, no. 11, p. 1290, 2018.
[47] Y. C. Chen et al., "Functional human vascular network generated in photocrosslinkable gelatin methacrylate hydrogels," Advanced functional materials, vol. 22, no. 10, pp. 2027-2039, 2012.
[48] H. J. Yoon et al., "Cold water fish gelatin methacryloyl hydrogel for tissue engineering application," PloS one, vol. 11, no. 10, p. e0163902, 2016.
[49] P. Chansoria, S. Asif, K. Polkoff, J. Chung, J. A. Piedrahita, and R. A. Shirwaiker, "Characterizing the Effects of Synergistic Thermal and Photo-Cross-Linking during Biofabrication on the Structural and Functional Properties of Gelatin Methacryloyl (GelMA) Hydrogels," ACS Biomaterials Science & Engineering, vol. 7, no. 11, pp. 5175-5188, 2021/11/08 2021, doi: 10.1021/acsbiomaterials.1c00635.
[50] J. Ramón-Azcón et al., "Gelatin methacrylate as a promising hydrogel for 3D microscale organization and proliferation of dielectrophoretically patterned cells," Lab on a Chip, vol. 12, no. 16, pp. 2959-2969, 2012.
[51] "CCK-8 protocol." https://www.dojindo.eu.com/TechnicalManual/Manual_CK04.pdf.