研究生: |
蘇子誠 Su, Zih-Cheng |
---|---|
論文名稱: |
設計與開發PCL-PEG-PCL diacrylate與瓊脂糖互穿網狀水膠作為軟骨組織工程應用 Design and Development of PCL-PEG-PCL Diacrylate and Agarose Interpenetrating Network Hydrogels for Cartilage Tissue Engineering |
指導教授: |
朱一民
Chu, I-Ming |
口試委員: |
蔡德豪
Tsai, De-Hao 林世傑 Lin, Shih-Jie |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2020 |
畢業學年度: | 107 |
語文別: | 英文 |
論文頁數: | 44 |
中文關鍵詞: | 三嵌段共聚物 、瓊脂糖 、水膠 、互穿網狀結構 、軟骨 、組織工程 |
外文關鍵詞: | PEC, agarose, hydrogels, interpenetrating networks, cartilage, tissue engineering |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
水膠具有高含水率的特性,因此常被利用在軟骨組織工程的應用,但因大多數的水膠不具有良好的機械性質往往限制了它的表現及應用。本研究的目的是合成一種具有良好生物相容性、高機械強度、高含水率及具有孔洞結構的水膠,並將其應用在軟骨的再生醫學。本研究中,選用瓊脂糖作為第一種具網狀結構的材料,因為其高含水率的特性、具有與軟骨組織相似的微結構,且能幫助軟骨細胞的生長等特性,已被廣泛地應在軟骨組織工程。另外,經由開環聚合的方式合成三嵌段共聚物(PEC),作為第二種同樣具有三維網狀結構的材料。PEC是一種可照光交聯的高分子,具有良好機械性質、可調控分子量的特性,且可提供軟骨細胞與幹細胞極佳的生長環境。互穿網狀結構(IPN)的合成方法是將PEC利用浸泡擴散至瓊脂糖內部,經照光交聯後形成水膠。本研究利用成骨細胞的細胞存活率與細胞型態呈現生物材料的細胞毒性與生物體外之相容性。動物實驗中,將不含細胞的生物材料分別植入大鼠背部與膝蓋骨軟骨缺損的區域,觀察其生物體內之相容性,檢測軟骨再生的程度是利用切片染色的方式觀察大鼠膝關節植入物中細胞的分布、型態與膠原蛋白等組成,進而比較分別植入IPN與PEC水膠對於軟骨修復的效果。本研究有以下幾點結論:互穿網狀結構有助於提升材料之機械性質;高含水率及更均勻的多孔結構可以在互穿網狀結構中被發現;IPN在生物體外與體內的降解速率比PEC慢;圓球狀的軟骨細胞被發現在新生軟骨組織的骨穴結構中,具有大量細胞質與膠原蛋白圍繞,是典型的軟骨組織的結構;PEC組別中發現軟骨往下生長影響軟骨下區正常分布之現象;IPN組別表現較佳的水膠的完整性,有效地防止軟骨往下生長,適合做為長期軟骨組織修復的填充材料。因此,此具有可調控特性的互穿網狀結構材料,有助於細胞外間質的分泌,是適合應用在軟骨組織工程的生物材料。
Hydrogels are suitable biomaterials for cartilage tissue engineering due to the excellent ability to retain water for nutrient and waste transport, however, the insufficient mechanical properties restrict the further applications. The objective of this study was to fabricate biocompatible hydrogels with good mechanical performance, high water content, and porous microstructure for cartilage regeneration. In this study, block copolymer, poly(ɛ-caprolactone)-poly(ethylene)-poly(ɛ-caprolactone) diacrylate (PCL-PEG-PCL; PEC), was prepared by ring-opening polymerization, and PEC hydrogels can be formed through free radical crosslinking mechanism. Agarose network is chosen as another component because of the high swelling behavior and cartilage-like microstructure, which is helpful for chondrocytes growth. Interpenetrating networks (IPN) were fabricated by diffusing PEC into agarose network followed by photo-crosslinking process. It was noted that incorporating PEC into the agarose network increased the elastic modulus and the compressive failure properties of individual component networks. In addition, high swelling ratio and uniform porosity microstructures were found in the IPN hydrogels. According to the results of osteochondral repair for IPN and PEC, round chondrocytes were contained within lacunae in the regenerated tissue in which much cytoplasm and collagen were found. However, obvious down growth of cartilage were found in PEC group; by contrast, the IPN showed the feature of maintaining the integrity of hydrogels, preventing cartilage form disrupting subchondral bone. Consequently, IPN hydrogel with adjustable properties could be a potential biomaterial supporting cell growth as well as ECM secretion for cartilage tissue engineering.
[1] W. H. Simon, The Human Joint in Health and Disease: University of Pennsylvania Press, 1978.
[2] D. S. Howell, "Biology of Cartilage Cells. R. A. Stockwell. Cambridge, Cambridge University Press, 1979. 329 pages; illustrated," Arthritis & Rheumatism, vol. 23, pp. 964-965, 1980.
[3] J. A. Buckwalter and H. J. Mankin, "Articular cartilage: tissue design and chondrocyte-matrix interactions," Instr Course Lect, vol. 47, pp. 477-86, 1998.
[4] J. A. Buckwalter, V. C. Mow, and A. Ratcliffe, "Restoration of Injured or Degenerated Articular Cartilage," J Am Acad Orthop Surg, vol. 2, pp. 192-201, Jul 1994.
[5] D. T. Felson, R. C. Lawrence, P. A. Dieppe, R. Hirsch, C. G. Helmick, J. M. Jordan, et al., "Osteoarthritis: new insights. Part 1: the disease and its risk factors," Ann Intern Med, vol. 133, pp. 635-46, Oct 17 2000.
[6] C. Slemenda, D. K. Heilman, K. D. Brandt, B. P. Katz, S. A. Mazzuca, E. M. Braunstein, et al., "Reduced quadriceps strength relative to body weight: a risk factor for knee osteoarthritis in women?," Arthritis Rheum, vol. 41, pp. 1951-9, Nov 1998.
[7] W. Zhang, R. W. Moskowitz, G. Nuki, S. Abramson, R. D. Altman, N. Arden, et al., "OARSI recommendations for the management of hip and knee osteoarthritis, Part II: OARSI evidence-based, expert consensus guidelines," Osteoarthritis Cartilage, vol. 16, pp. 137-62, Feb 2008.
[8] P. Abdel-Sayed and D. P. Pioletti, "Strategies for improving the repair of focal cartilage defects," Nanomedicine (Lond), vol. 10, pp. 2893-905, 2015.
[9] R. Langer and J. P. Vacanti, "Tissue engineering," Science, vol. 260, pp. 920-6, May 14 1993.
[10] T. Dvir, B. P. Timko, D. S. Kohane, and R. Langer, "Nanotechnological strategies for engineering complex tissues," Nature Nanotechnology, vol. 6, p. 13, 2010.
[11] R. Jeuken, A. Roth, R. Peters, C. van Donkelaar, J. Thies, L. van Rhijn, et al., "Polymers in Cartilage Defect Repair of the Knee: Current Status and Future Prospects," Polymers, vol. 8, p. 219, 2016.
[12] R. L. Mauck, M. A. Soltz, C. C. Wang, D. D. Wong, P. H. Chao, W. B. Valhmu, et al., "Functional tissue engineering of articular cartilage through dynamic loading of chondrocyte-seeded agarose gels," J Biomech Eng, vol. 122, pp. 252-60, Jun 2000.
[13] J. Weisser, B. Rahfoth, A. Timmermann, T. Aigner, R. Brauer, and K. von der Mark, "Role of growth factors in rabbit articular cartilage repair by chondrocytes in agarose," Osteoarthritis Cartilage, vol. 9 Suppl A, pp. S48-54, 2001.
[14] Z. Yin, X. Yang, Y. Jiang, L. Xing, Y. Xu, Y. Lu, et al., "Platelet-rich plasma combined with agarose as a bioactive scaffold to enhance cartilage repair: an in vitro study," J Biomater Appl, vol. 28, pp. 1039-50, Mar 2014.
[15] A. D. Cigan, B. L. Roach, R. J. Nims, A. R. Tan, M. B. Albro, A. M. Stoker, et al., "High seeding density of human chondrocytes in agarose produces tissue-engineered cartilage approaching native mechanical and biochemical properties," J Biomech, vol. 49, pp. 1909-1917, Jun 14 2016.
[16] S. Tang, W. Yang, and X. Mao, "Agarose/collagen composite scaffold as an anti-adhesive sheet," Biomed Mater, vol. 2, pp. S129-34, Sep 2007.
[17] G. Karoubi, M. L. Ormiston, D. J. Stewart, and D. W. Courtman, "Single-cell hydrogel encapsulation for enhanced survival of human marrow stromal cells," Biomaterials, vol. 30, pp. 5445-55, Oct 2009.
[18] B. Rahfoth, J. Weisser, F. Sternkopf, T. Aigner, K. von der Mark, and R. Brauer, "Transplantation of allograft chondrocytes embedded in agarose gel into cartilage defects of rabbits," Osteoarthritis Cartilage, vol. 6, pp. 50-65, Jan 1998.
[19] Y. P. Singh, N. Bhardwaj, and B. B. Mandal, "Potential of Agarose/Silk Fibroin Blended Hydrogel for in Vitro Cartilage Tissue Engineering," ACS Appl Mater Interfaces, vol. 8, pp. 21236-49, Aug 24 2016.
[20] C. Y. Ko, K. L. Ku, S. R. Yang, T. Y. Lin, S. Peng, Y. S. Peng, et al., "In vitro and in vivo co-culture of chondrocytes and bone marrow stem cells in photocrosslinked PCL-PEG-PCL hydrogels enhances cartilage formation," J Tissue Eng Regen Med, vol. 10, pp. E485-E496, Oct 2016.
[21] C.Y. Ko, C.Y. Yang, S.R. Yang, K.L. Ku, C.K. Tsao, D. Chwei-Chin Chuang, et al., "Cartilage formation through alterations of amphiphilicity of poly(ethylene glycol)–poly(caprolactone) copolymer hydrogels," RSC Advances, vol. 3, pp. 25769-25779, 2013.
[22] S. Peng, H. X. Liu, C. Y. Ko, S. R. Yang, W. L. Hung, and I. M. Chu, "A hydrolytically-tunable photocrosslinked PLA-PEG-PLA/PCL-PEG-PCL dual-component hydrogel that enhances matrix deposition of encapsulated chondrocytes," J Tissue Eng Regen Med, vol. 11, pp. 669-678, Mar 2017.
[23] F. J. O'Brien, "Biomaterials & scaffolds for tissue engineering," Materials Today, vol. 14, pp. 88-95, 2011.
[24] S. L. Vega, M. Y. Kwon, and J. A. Burdick, "Recent advances in hydrogels for cartilage tissue engineering," Eur Cell Mater, vol. 33, pp. 59-75, Jan 30 2017.
[25] M. Shivashankar and B. K. Mandal, "A review on interpenetrating polymer network," International Journal of Pharmacy and Pharmaceutical Sciences, vol. 4, pp. 1-7, 2012.
[26] B. J. DeKosky, N. H. Dormer, G. C. Ingavle, C. H. Roatch, J. Lomakin, M. S. Detamore, et al., "Hierarchically designed agarose and poly(ethylene glycol) interpenetrating network hydrogels for cartilage tissue engineering," Tissue Eng Part C Methods, vol. 16, pp. 1533-42, Dec 2010.
[27] G. C. Ingavle, A. W. Frei, S. H. Gehrke, and M. S. Detamore, "Incorporation of Aggrecan in Interpenetrating Network Hydrogels to Improve Cellular Performance for Cartilage Tissue Engineering," Tissue Engineering. Part A, vol. 19, pp. 1349-1359, 2013.
[28] D. A. Rennerfeldt, A. N. Renth, Z. Talata, S. H. Gehrke, and M. S. Detamore, "Tuning mechanical performance of poly(ethylene glycol) and agarose interpenetrating network hydrogels for cartilage tissue engineering," Biomaterials, vol. 34, pp. 8241-57, Nov 2013.
[29] J. Zhang, J. Wang, H. Zhang, J. Lin, Z. Ge, and X. Zou, "Macroporous interpenetrating network of polyethylene glycol (PEG) and gelatin for cartilage regeneration," Biomed Mater, vol. 11, p. 035014, Jun 15 2016.
[30] S. Dinescu, B. Galateanu, E. Radu, A. Hermenean, A. Lungu, I. C. Stancu, et al., "A 3D Porous Gelatin-Alginate-Based-IPN Acts as an Efficient Promoter of Chondrogenesis from Human Adipose-Derived Stem Cells," Stem Cells International, vol. 2015, p. 17, 2015.
[31] M. A. Haque, T. Kurokawa, and J. P. Gong, "Super tough double network hydrogels and their application as biomaterials," Polymer, vol. 53, pp. 1805-1822, 2012.
[32] J. P. Gong, Y. Katsuyama, T. Kurokawa, and Y. Osada, "Double-Network Hydrogels with Extremely High Mechanical Strength," Advanced Materials, vol. 15, pp. 1155-1158, 2003.
[33] A. Nakayama, A. Kakugo, J. P. Gong, Y. Osada, M. Takai, T. Erata, et al., "High Mechanical Strength Double-Network Hydrogel with Bacterial Cellulose," Advanced Functional Materials, vol. 14, pp. 1124-1128, 2004.
[34] K. Yasuda, J. Ping Gong, Y. Katsuyama, A. Nakayama, Y. Tanabe, E. Kondo, et al., "Biomechanical properties of high-toughness double network hydrogels," Biomaterials, vol. 26, pp. 4468-4475, 2005.
[35] C. Azuma, K. Yasuda, Y. Tanabe, H. Taniguro, F. Kanaya, A. Nakayama, et al., "Biodegradation of high-toughness double network hydrogels as potential materials for artificial cartilage," J Biomed Mater Res A, vol. 81, pp. 373-80, May 2007.
[36] L. Weng, A. Gouldstone, Y. Wu, and W. Chen, "Mechanically strong double network photocrosslinked hydrogels from N,N-dimethylacrylamide and glycidyl methacrylated hyaluronan," Biomaterials, vol. 29, pp. 2153-63, May 2008.
[37] K. Higa, N. Kitamura, K. Goto, T. Kurokawa, J. P. Gong, F. Kanaya, et al., "Effects of osteochondral defect size on cartilage regeneration using a double-network hydrogel," BMC Musculoskeletal Disorders, vol. 18, p. 210, 2017.
[38] M. Peter and P. Tayalia, "An alternative technique for patterning cells on poly(ethylene glycol) diacrylate hydrogels," RSC Advances, vol. 6, pp. 40878-40885, 2016.
[39] C. Wang, X.D. Xie, X. Huang, Z.H. Liang, and C.R. Zhou, "A quantitative study of MC3T3-E1 cell adhesion, morphology and biomechanics on chitosan–collagen blend films at single cell level," Colloids and Surfaces B: Biointerfaces, vol. 132, pp. 1-9, 2015.
[40] E. F. Mason and J. C. Rathmell, "Cell metabolism: An essential link between cell growth and apoptosis," Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol. 1813, pp. 645-654, 2011.
[41] C. G. Williams, A. N. Malik, T. K. Kim, P. N. Manson, and J. H. Elisseeff, "Variable cytocompatibility of six cell lines with photoinitiators used for polymerizing hydrogels and cell encapsulation," Biomaterials, vol. 26, pp. 1211-1218, 2005.
[42] W.-J. Li, H. Chiang, T.-F. Kuo, H.-S. Lee, C.-C. Jiang, and R. S. Tuan, "Evaluation of articular cartilage repair using biodegradable nanofibrous scaffolds in a swine model: a pilot study," Journal of Tissue Engineering and Regenerative Medicine, vol. 3, pp. 1-10, 2009.
[43] H. Park, X. Guo, J. S. Temenoff, Y. Tabata, A. I. Caplan, F. K. Kasper, et al., "Effect of swelling ratio of injectable hydrogel composites on chondrogenic differentiation of encapsulated rabbit marrow mesenchymal stem cells in vitro," Biomacromolecules, vol. 10, pp. 541-6, Mar 9 2009.
[44] J. Maitra and V. K. Shukla, "Cross-linking in hydrogels-a review," American Journal of Polymer Science, vol. 4, pp. 25-31, 2014.
[45] T. Zhou, X. Li, G. Li, T. Tian, S. Lin, S. Shi, et al., "Injectable and thermosensitive TGF-β1-loaded PCEC hydrogel system for in vivo cartilage repair," Scientific Reports, vol. 7, p. 10553, 2017.
[46] H. Zhang, J. Xia, X. Pang, M. Zhao, B. Wang, L. Yang, et al., "Magnetic nanoparticle-loaded electrospun polymeric nanofibers for tissue engineering," Materials Science and Engineering: C, vol. 73, pp. 537-543, 2017.
[47] F. Guo, D. Guo, W. Zhang, Q. Yan, Y. Yang, W. Hong, et al., "Preparation of curcumin-loaded PCL-PEG-PCL triblock copolymeric nanoparticles by a microchannel technology," European Journal of Pharmaceutical Sciences, vol. 99, pp. 328-336, 2017/03/01/ 2017.
[48] S. Zhou, X. Deng, and H. Yang, "Biodegradable poly(ε-caprolactone)-poly(ethylene glycol) block copolymers: characterization and their use as drug carriers for a controlled delivery system," Biomaterials, vol. 24, pp. 3563-3570, 2003/09/01/ 2003.
[49] S. P. Patel, R. Vaishya, A. Patel, V. Agrahari, D. Pal, and A. k. Mitra, "Optimization of novel pentablock copolymer based composite formulation for sustained delivery of peptide/protein in the treatment of ocular diseases," Journal of Microencapsulation, vol. 33, pp. 103-113, 2016/02/17 2016.
[50] X. Zhao and J. M. Harris, "Novel Degradable Poly(ethylene glycol) Esters for Drug Delivery," in Poly(ethylene glycol). vol. 680, ed: American Chemical Society, 1997, pp. 458-472.
[51] M. B. Browning, S. N. Cereceres, P. T. Luong, and E. M. Cosgriff-Hernandez, "Determination of the in vivo degradation mechanism of PEGDA hydrogels," Journal of Biomedical Materials Research Part A, vol. 102, pp. 4244-4251, 2014/12/01 2014.
[52] M. R. Jeuken, K. A. Roth, J. R. Peters, C. C. Van Donkelaar, C. J. Thies, W. L. Van Rhijn, et al., "Polymers in Cartilage Defect Repair of the Knee: Current Status and Future Prospects," Polymers, vol. 8, 2016.
[53] J. J. Roberts and P. J. Martens, "9 - Engineering biosynthetic cell encapsulation systems," in Biosynthetic Polymers for Medical Applications, L. Poole-Warren, P. Martens, and R. Green, Eds., ed: Woodhead Publishing, 2016, pp. 205-239.
[54] K. L. Christman, "Biomaterials for tissue repair," Science, vol. 363, p. 340, 2019.
[55] E. A. Makris, A. H. Gomoll, K. N. Malizos, J. C. Hu, and K. A. Athanasiou, "Repair and tissue engineering techniques for articular cartilage," Nature Reviews Rheumatology, vol. 11, p. 21, 2014.
[56] J. A. Burdick, R. L. Mauck, J. H. Gorman, and R. C. Gorman, "Acellular Biomaterials: An Evolving Alternative to Cell-Based Therapies," Science Translational Medicine, vol. 5, p. 176, 2013.
[57] B. Sharma, S. Fermanian, M. Gibson, S. Unterman, D. A. Herzka, B. Cascio, et al., "Human Cartilage Repair with a Photoreactive Adhesive-Hydrogel Composite," Science Translational Medicine, vol. 5, p. 167, 2013.
[58] W. Cui, Q. Wang, G. Chen, S. Zhou, Q. Chang, Q. Zuo, et al., "Repair of articular cartilage defects with tissue-engineered osteochondral composites in pigs," Journal of Bioscience and Bioengineering, vol. 111, pp. 493-500, 2011.
[59] A. Galperin, R. A. Oldinski, S. J. Florczyk, J. D. Bryers, M. Zhang, and B. D. Ratner, "Integrated Bi-Layered Scaffold for Osteochondral Tissue Engineering," Advanced Healthcare Materials, vol. 2, pp. 872-883, 2013.
[60] Z. Chenjun, F. Hao, H. Junzheng, W. Zhen, X. Shun, Z. Qiang, et al., "Repair of Articular Osteochondral Defects Using an Integrated and Biomimetic Trilayered Scaffold," Tissue Engineering Part A, vol. 24, pp. 1680-1692, 2018.