研究生: |
張恆睿 |
---|---|
論文名稱: |
透明金屬氧化物於近紅外及近紫外光波長之應用 Transparent Metal Oxides for Near-Infrared and Near-Ultraviolet Applications |
指導教授: | 吳孟奇 |
口試委員: |
蘇炎坤
劉文超 許渭州 陳英忠 劉柏村 劉埃森 |
學位類別: |
博士 Doctor |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 英文 |
論文頁數: | 118 |
中文關鍵詞: | 透明金屬氧化物 、氧化銦鉬 、氧化銦鎵鋅 、高頻發光二極體 、發光電晶體 |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本論文中,我們研製適用於近紅外及近紫外光波段的透明金屬氧化物,並完成其元件製備。透明金屬氧化物中的載子吸收造成其在近紅外光波段穿透率的下降,由於氧化銦鉬具有高價電差的材料特性,其在近紅外光波段的穿透率優於氧化銦錫等商用透明電極。因此,我們研製氧化銦鉬並應用於近紅外光高速發光二極體。藉由共濺鍍沉積之氧化銦鉬薄膜具有低電阻率(3.55 × 10-4 Ω-cm)及近紅外光波長高穿透率(99%)的材料特性。其後,我們應用電晶體概念設計具有雙極性結構的發光二極體晶片。藉由氧化銦鉬透明電極製程的導入,近紅外光發光二極體的發光功率可提昇兩倍;同時,藉由雙極性磊晶結構的設計,近紅外光發光二極體之頻率響應頻寬為649 MHz。此外,由於氧化銦鉬具有高功函數的材料特性,有利於有機元件中的電洞傳輸,因此我們進一步整合氧化銦鉬透明電極與有機太陽能電池。使用氧化銦鉬透明電極之太陽電池,其功率轉換效率可達3.77%;其未來將可和含近紅外吸收材料的有機太樣電池進一步結合應用。在近紫外光波長區段,金屬氧化物的穿透率主要取決於其光能隙大小。因此,我們研製寬能隙之氧化銦鎵鋅薄膜。藉由濺鍍製程的優化,氧化銦鎵鋅薄膜具有低電阻(7.16 × 10-4 Ω-cm)及近紫外光波長高穿透率的優點,未來可進一步應用於近紫外發光二極體及光偵測器等元件應用。
In this thesis, transparent metal oxides for near-infrared (NIR) and near-ultraviolet (NUV) are prepared and discussed, and their applications are further indicated. Indium molybdenum oxide (IMO) exhibited the material characteristic of valence difference of 3 between the In3+ matrix and Mo6+ dopants is feasible for NUV device applications. The optimum IMO film shows the characteristics of low electrical resistivity of 3.55 × 10-4 Ω-cm and high optical transmittance of 99% at 968 nm. Afterwards, a high-speed and high-light-output-power InGaAs/GaAs NIR LED at 968 nm wavelength employing IMO contact is constructed. As compared to NIR LED using AuGe contact, NIR LED using IMO contact produces a light output power with a rate of 5.7 μW/mA, which is twice of 2.7 μW/mA for NIR LED using AuGe contact at corresponding injection current level. These NIR LEDs exhibit the 3-dB optical bandwidth of 649 MHz, which is correlated to the carrier recombination lifetime of 245 ps. Besides, the IMO exhibits characteristic of high work function around 4.93 eV. Thus, the incorporation of IMO contact and P3HT/PCBM organic solar cells is discussed. Solar cell using optimum IMO contact shows an higher electrical power efficiency of 3.77%. Furthermore, indium gallium zinc oxide (IGZO) is constructed for future NUV applications. The optimization of IGZO preparation process is realized. IGZO with the wide optical band gap of 3.7 eV, shows a low electrical resistivity of 7.16 × 10-4 Ω-cm and a high optical transmittance in NUV wavelengths. IGZO is the alluring transparent contact for NUV device applications.
References
[1] K. Badeker, “Concerning the electricity conductibility and the thermoelectric energy of several heavy metal bonds,” Ann. Phys. (Leipzig), vol. 22, pp. 749, 1907.
[2] Z. M. Jarzebski, “Oxide Semiconductors, ” International Series of Monographs in the Science of the Solid State, vol. 14, pp. 239, 1973.
[3] J. F. Wagner, Transparent electronics, Science, vol. 300, pp.1245-1246, 2004.
[4] G. Thomas, Invisible circuits, Nature vol. 389, pp. 907-908, 1997.
[5] Y. Meng, X. L. Yang, H. X. Chen, J. Shen, Y. M. Jiang, Z. J. Zhang, and Z. Y. Hua, A new transparent conductive thin film In2O3 :Mo, Thin Solid Films, vol. 394, pp. 219-223, 2001.
[6] M. F. A. M. van Hest, M. S. Dabney, J. D. Perkins, and D. S. Ginley, “High-mobility molybdenum doped indium oxide,” Thin Solid Films, vol. 496, pp. 70-74, 2006.
[7] E. Elangovan, G. Goncalves, R. Martins, and E. Fortunato, “RF sputtered wide work function indium molybdenum oxide thin films for solar cell applications,” Sol. Energy, vol. 83, pp. 726-731, 2009.
[8] G. Frank and H. Kostlin, “Electrical properties and defect model of tin-doped indium oxide layers,” Appl. Phys. A: Solids Surf., vol. 27, pp. 197-206, 1982.
[9] S. Y. Sun, J. L. Huang, and D. F. Lii, “Effects of H2 in indium-molybdenum oxide films during high density plasma evaporation at room temperature,” Thin Solid Films, vol. 469, pp. 6-10, 2004.
[10] W. Miao, X. Li, Q. Zhang, L. Huang, Z. Zhang, L. Zhang, and X. Yan, “Transparent conductive In2O3:Mo thin films prepared by reactive direct current magnetron sputtering at room temperature,” Thin Solid Films, vol. 500, pp. 70-73, 2006.
[11] Y. Shigesato, Y. Hayashi, and T. Haranoh, “Doping mechanisms of tin-doped indium oxide films,” Appl. Phys. Lett., vol. 61, pp. 73-75, 1992.
[12] S. Y. Sun, J. L. Huang, and D. F. Lii, “Investigation of the crystallization mechanisms in indium molybdenum oxide films by vacuum annealing,” J. Mater. Res., vol. 20, pp. 2030-2037, 2005.
[13] L. Huang, X. Li, Q. Zhang, W. Miao, L. Zhang, X. Yan, Z. Zhang, and Z. Hua, “Properties of transparent conductive In2O3:Mo thin films deposited by channel spark ablation,” J. Vac. Sci. Technol. A, vol. 23, pp. 1350-1353, 2005.
[14] X. Li, W. Miao, Q. Zhang, I. Huang, and Z. Zhang, “The electrical and optical properties of molybdenum-doped indium oxide films grown at room temperature from metallic target,” Semicond. Sci. Technol., vol. 20, pp. 823-828, 2005.
[15] X. Li, W. Miao, Q. Zhang, L. Huang, Z. Zhang, and Z. Hu, “Preparation of molybdenum-doped indium oxide thin films using reactive direct-current magnetron sputtering,” J. Mater. Res., vol. 20, pp. 1404-1407, 2005.
[16] Y. Yoshida, T. A. Gessert, C. L. Perkins, and T. J. Coutts, “Development of radio-frequency magnetron sputtered indium molybdenum oxides,” J. Vac. Sci. Technol. A, vol. 21, pp. 1092-1096, 2003.
[17] S. Parthiban, V. Gokulakrishnan, K. Ramamurthi, E. Elangovan, R. Martins, E. Fortunato, R. Ganesan, “High near-infrared transparent molybdenum-doped indium oxide thin films for nanocrystalline silicon solar cell applications,” Sol. Energy Mater. Sol. Cells, vol. 93, pp. 92-97, 2009.
[18] S. Calnan, A. N. Tiwari, High mobility transparent conducting oxides for thin film solar cells, Thin Solid Films, vol. 518, pp. 1839-1849, 2010.
[19] P. Drude, Ann. Phys., vol. 3, pp. 369, 1900.
[20] T. J. Coutts, D. L. Young, and X. Li, “Characterization of transparent conducting oxides,” MRS. Bull., vol. 25, no. 58, pp. 58-65, 2000.
[21] I. Hamberg and C. G. Granqvist, “Evaporated Sn-doped In2O3 films: Basic optical properties and applications to energy-efficient windows,” J. Appl. Phys., vol. 60, pp. R123, 1986.
[22] G. Frank, E. Kauer, and H. Kostlin, “Transparent heat-reflecting coatings based on highly doped semiconductors,” Thin Solid Films, vol. 77, pp. 107-118, 1981.
[23] K. L. Chopra, S. Major, and D. K. Pandya, “Transparent conductors - A status review,” Thin Solid Films, vol. 102, pp. 1-46, 1983.
[24] J. M. Ting, and B. S. Tsai, “DC reactive sputter deposition of ZnO:Al thin film on glass,” Mater. Chem. Phys., vol. 72, pp. 273-277, 2001.
[25] M. P. Taylor, D. W. Readey, C. W. Teplin, M. F. A. M. van Hest, J. L. Alleman, M. S. Dabney, L. M. Gedvilas, B. M. Keyes, B. To, J. D. Perkins, and D. S. Ginley, “The electrical, optical and structural properties of InxZn1−xOy (0 ≤ x ≤ 1) thin films by combinatorial techniques,” Meas. Sci. Technol., vol. 16, pp. 90-94, 2005.
[26] H. Kim, J. S. Horwitz, G. P. Kushto, S. B. Qadri, Z. H. Kafafi, and D. B. Chrisey, “Transparent conducting Zr-doped In2O3 thin films for organic light-emitting diodes,” Appl. Phys. Lett., vol. 78, pp. 1050-1052, 2001.
[27] J. H. Shin, S. H. Shin, J. I. Park, and H. H. Kim, “Properties of dc magnetron sputtered indium tin oxide on polymeric substrates at room temperature,” J. Appl. Phys., vol. 89, pp. 5199-5203, 2001.
[28] E. Burstein, Phys. Rev., vol. 25, pp. 7826, 1982.
[29] B. H. Choi, and H. B. Im, “Optical and electrical properties of Ga2O3-doped ZnO films prepared by r.f. sputtering,” Thin Solid Films, vol. 193/194, pp. 712-720, 1990.
[30] M. Ando, E. Nishimura, K. Onisawa, and T. Minemura, “Effect of microstructures on nanocrystallite nucleation and growth in hydrogenated amorphous indium tinoxide films,” J. Appl. Phys., vol. 93, pp. 1032-1038, 2003.
[31] S. Kaleemulla, A. S. Reddy, S. Uthanna, and P. S. Reddy, “Room temperature photoluminescence property of Mo-doped In2O3 thin films,” Current Applied Physics, vol. 10, pp. 386-720390, 2010.
[32] N. Holonyak, Jr., “Is the light emitting diode (LED) an ultimate lamp?” Am. J. Phys., vol. 68, no. 9, pp. 864–866, 2000.
[33] M. G. Craford, N. Holonyak, Jr., and F. A. Kish, “In pursuit of the ultimate lamp,” Sci. Am., vol. 284, no. 2, pp. 62-67, 2001.
[34] R. J. Keyes and T. M. Quist, “Recombination radiation emitted by gallium arsenide,” Proc. IRE, Amg., vol. 50, pp. 1822-1823, 1962.
[35] S. F. Chen, H. L. Syu, C. C. Huang, Y. L. Lee, C. L. Ho, and M. C. Wu, “High-frequency modulation of GaAs/AlGaAs LEDs using Ga-doped ZnO current spreading layers,” IEEE Electron Device Lett., vol. 35, no. 1, pp. 36-38, 2014.
[36] C. H. Chen, M. Hargis, J. M. Woodall, M. R. Melloch, J. S. Reynolds, W. Wang, and E. Yablonovitch, “GHz bandwidth GaAs light-emitting diodes,” Appl. Phys. Lett., vol. 74, no. 21, pp. 3140-3142, 1999.
[37] M. Feng, N. Holonyak, Jr., and W. Hafez, “Light-emitting transistor: light emission from InGaP/GaAs heterojunction bipolar transistors,” Appl. Phys. Letts., vol. 84, pp. 151, 2004.
[38] M. Feng, N. Holonyak, Jr., and R. Chan, “Quantum-well-base heterojunction bipolar light-emitting transistor,” Appl. Phys. Letts., vol. 84, pp. 1952-1954, 2004.
[39] G. Walter, C. H. Wu, H. W. Then, M. Feng, and N. Holonyak, Jr., “Tilted-charge high speed (7 GHz) light emitting diode,” Appl. Phys. Letts., vol. 94, pp. 231125-1-231125-3, 2009.
[40] C. H. Wu, G. Walter, H. W. Then, M. Feng, and N. Holonyak, Jr., “4-GHz modulation bandwidth of integrated 2x2 LED array,” IEEE Photon. Technol. Lett., vol. 21, pp. 1834-1836, 2009.
[41] K. Suh, H. K. Park, and K. L. Moazed, “Interfacial studies of deposited thin films of refractory metals on gallium arsenide substrates. Mo-GaAs,” J. Vac. Sci. Technol. B, vol. 1, pp. 365-370, 1983.
[42] C. Y. Nee, C. Y. Chang, T. F. Cheng, and T. S. Huang, “The interfacial reaction and electrical characteristics of molybdenum-n-GaAs contacts,” Journal of Materials Science Letts., vol. 7, pp. 1375-1376, 1988.
[43] S. F. Chen, H. L. Syu, C. L. Liao, Y. F. Chang, C. C. Huang, C. L. Ho, and M. C. Wu, “Low specific contact resistance of gallium zinc oxide prepared by atomic layer deposition contact on p+-GaAs for high-speed near-infrared light-emitting diode applications,” IEEE Electron Device Lett., vol. 34, pp. 972-974, 2013.
[44] C. J. Brabec, N. S. Sariciftci, and J. C. Hummelen, “Plastic solar cells,” Adv. Mater., vol. 11, pp. 15-26, 2001.
[45] C. J. Brabec, “Organic photovoltaics: technology and market,” Sol. Energy Mater. Sol. Cells, vol. 83, pp. 273-292, 2004.
[46] J. Jung, D. Kim, J. Lim, C. Lee, and S. C. Yoon, “High efficient inkjet-printed organic photovoltaic cells,” Jpn. J. Appl. Phys., vol. 49, pp. 05EB03, 2010.
[47] D. Chirvase, J. Parisi, J. C. Hummelen, and V. Dyakonov, “Influence of nanomorphology on the photovoltaic action of polymer-fullerene composites,” Nanotechnology, vol. 15, pp. 1317-1323, 2004.
[48] V. Shrotriya, J. Ouyang, R. J. Tseng, G. Li, and Y. Yang, “Absorption spectra modification in poly(3-hexylthiophene):methanofullerene blend thin films,” Chem. Phys. Lett., vol. 411, pp. 138-143, 2005.
[49] H. K. Kim, K. S. Lee, and J. H. Kwon, “Transparent indium zinc oxide top cathode prepared by plasma damage-free sputtering for top-emitting organic light-emitting diodes,” Appl. Phys. Lett., vol. 88, pp. 012103, 2006.
[50] K. Ramamoorthy, K. Kumar, R. Chandramohan, and K. Sankaranarayanan, “Review on material properties of IZO thin films useful as epi-n-TCOs in opto-electronic (SIS solar cells, polymeric LEDs) devices,” Mater. Sci. Eng. B, vol. 126, pp. 1-15, 2006.
[51] R. H. Franken, C. H. M. van der Werf, J. Loffler, J. K. Rath, and R. E. I. Schropp, “Beneficial effects of sputtered ZnO:Al protection layer on SnO2:F for high-deposition rate hot-wire CVD p-i-n solar cells,” Thin Solid Films, vol. 501, pp. 47-50, 2006.
[52] Y. C. Lin, S. J. Chang, Y. K. Su, T. Y. Tsai, C. S. Chamg, S. C. Shei, C. W. Kuo, and S. C. Chen, “InGaN/GaN light-emitting diodes with Ni/Au, Ni/ITO, and ITO p-type contacts,” Solid-State Electron., vol. 47, pp. 849-853, 2003.
[53] W. Lim, S. H. Kim, Y. L. Wang, J. W. Lee, D. P. Norton, S. J. Pearton, F. Ren, and I. I. Kravchenko, “Stable room temperature deposited amorphous InGaZnO4 thin film transistors,” J. Vac. Sci. Technol. B, vol. 26, pp. 959, 2008.
[54] K. Nomura, T. Kamiya, H. Ohta, T. Uruga, M. Hirano, and H. Hosono, “Local coordination structure and electronic structure of the large electron mobility amorphous oxide semiconductor In-Ga-Zn-O: Experiment and ab initio calculations,” Phys. Rev. B, vol. 75, pp. 035212, 2007.
[55] H. Yabuta, M. Sano, K. Abe, T. Aiba, T. Den, H. Kumomi, K. Nomura, T. Kamiya, and H. Hosono, “High-mobility thin-film transistor with amorphous InGaZnO4 channel fabricated by room temperature rf-magnetron sputtering,” Appl. Phys. Lett., vol. 89, pp. 112123, 2006.
[56] K. Nomura, A. Takagi, T. Kamiya, H. Ohta, M. Hirano, and H. Hosono, “Amorphous oxide semiconductors for high-performance flexible thin-film transistors,” Jpn. J. Appl. Phys., vol. 45, pp. 4303, 2006.
[57] D. S. Liu, C. H. Lin, F. C. Tsai, and C. C. Wu, “Microstructure investigation of indium tin oxide films cosputtered with zinc oxide at room temperature,” J. Vac. Sci. Technol. A, vol. 24, pp. 694, 2006.
[58] B. Kumar, H. Gong, and R. Akkipeddi, “A study of conduction in the transition zone between homologous and ZnO-rich regions in the In2O3-ZnO system,” J. Appl. Phys., vol. 97, pp. 063706-063712, 2005.