簡易檢索 / 詳目顯示

研究生: 林修兆
Lin, Hsiu-Chao
論文名稱: 兩親性嵌段共聚物之原位成膠性質於細胞移植載體與藥物緩釋系統之應用:機制與優化研究
The Applications of Amphiphilic Block-copolymer In Situ Gelation for Transplanted Cell Scaffold and Sustained-release Systems — Mechanism and Optimization Study
指導教授: 朱一民
Chu, I-Ming
口試委員: 莊峻鍠
Juang, Jyuhn-Huarng
陳志平
Chen, Jr-Ping
孫一明
Sun, I-Ming
駱俊良
Lo, Chun-Liang
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2019
畢業學年度: 108
語文別: 英文
論文頁數: 110
中文關鍵詞: 溫度敏感型胺基酸水膠原位成膠胰島素阿黴素血管內皮生長因子他克莫司
外文關鍵詞: thermosensitive hydrogel, in situ gelation, insulin, vascular endothelial growth factor (VEGF), doxorubicin (DOX), tacrolimus (FK506)
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討可原位成膠之溫度敏感型胺基酸水膠,藉由調整親疏水鏈段結構比例,並以帶正負電荷胺基酸分子修飾後,分析其成膠性質與機制以及應用於細胞骨架或長期藥物釋放之潛力。甲氧基化聚乙二醇-聚左旋丙胺酸[methoxy-poly(ethylene glycol)-poly(ʟ-alanine), mPEG-P(Ala)]為一已知溫度敏感型胺基酸水膠,利用mPEG-NH2和N-carboxy anhydride ʟ-alanine (NCA-alanine)開環聚合反應合成,再以N-carboxyl anhydride β-benzyl ʟ-aspartate/ ʟ-lysine開環聚合於mPEG-P(Ala)在末端進行修飾,分別自末端接上天門冬胺酸(ʟ-aspartate)與離胺酸(ʟ-lysine)並去除保護基,形成甲氧基化聚乙二醇-聚左旋丙胺酸-聚左旋天門冬胺酸[methoxy-poly(ethylene glycol)-poly(ʟ-alanine)-poly(ʟ-aspartate), mPEG-P(Ala)-Asp]與甲氧基化聚乙二醇-聚左旋丙胺酸-聚離胺酸[methoxy-poly(ethylene glycol)-poly(ʟ-alanine)-poly(ʟ-lysine), mPEG-P(Ala)-Lys]水膠,並依此進行各階段研究。
    將於第一章節對於相關研究文獻討論;第二章節將探討所合成之高分子,以1H與13C核磁共振光譜儀、傅立葉轉換反射式紅外線光譜儀、凝膠滲透層析儀、流變儀、圓二色光譜儀、掃描式電子顯微鏡與穿透式電子顯微鏡分析,建立胺基酸水膠其各種性質及其成膠機制,此外,更進一步探討體外細胞毒性測試、生物相容性與水膠降解特性,以及作為藥物載體,釋放大分子蛋白質或包覆親/疏水性小分子藥物阿黴素(Doxorubicin, DOX)之可能;第三章節將進一步將水膠混合MIN6 β cell line,觀察其作為細胞支架之生物相容性與所包覆的MIN6 cells胰島素分泌功能;第四章將疏水型抗排斥藥物他克莫司(Tacrolimus, FK506)作為標的藥物,探討混合式胺基酸水膠與其藥物包覆及持續釋放情形。最後一章節為本研究之結論,將進一步比較在mPEG-P(Ala)的尾端修飾正、負電荷後,作為細胞骨架與藥物載體時之表現。本研究期望開發及改善胺基酸水膠,立基於具有原位成膠、良好的生物相容性、降解性等特性,以成為有優勢的細胞骨架或有潛力於局部的藥物治療之應用。


    The objectives of this study are to discuss the thermoresponsive polypeptide hydrogel properties, the potential of in situ gelation in sustained drug delivery and cells scaffold. Methoxy-poly (ethylene glycol)-poly (ʟ-alanine), mPEG-P(Ala) is a well-known thermoresponsive polypeptide hydrogel. The block copolymer was synthesized through mPEG-NH2 and N-carboxy anhydride-alanine (NCA-ʟ-alanine) ring-opening polymerization. Afterwards, using N-carboxyl anhydride β-benzyl ʟ-aspartate/ ʟ-lysine through ring-opening polymerization again and removal of the benzyl protecting groups to form the hydrogel, we had two kinds of hydrogel based on the previous copolymer structure, methoxy-poly(ethylene glycol)-poly(ʟ-alanine)-poly(ʟ-aspartate), mPEG-P(Ala)-Asp and methoxy-poly(ethylene glycol)-poly(ʟ-alanine)-poly(ʟ-lysine), mPEG-P(Ala)-Lys. Therefore, we have synthesized a series of mPEG-P(Ala) diblock copolymers, mPEG-P(Ala)-Asp and mPEG-P(Ala)-Lys triblock copolymers, and investigated the hydrophilic/ hydrophobic block length effect on the secondary structure influencing the nanostructure of the self-assembled amphiphilic copolymers, the thermosensitivity of the hydrogels in aqueous solution.
    The chapter I is a literature review regarding the field of hydrogels. After that, we explored the physicochemical properties of the copolymers in solubilized and hydrogel forms were studied in terms of their assembly and transition in response to temperature changes. Next, the researches were focused on demonstrating non-toxicity, biocompatibility, and biodegradability with 293T cells encapsulated in the hydrogel. Furthermore, we observed hydrogel as MIN6 cells scaffold and insulin responded to glucose. In order to enhance angiogenesis potential, we used hydrogel containing vascular endothelial growth factor (VEGF) and evaluated its release upon incorporation.
    On the other hand, we discussed the regulation of drug release rate and depot potential of the different kinds of hydrogels. Bovine serum albumin (BSA), doxorubicin (DOX) and tacrolimus (FK506) were model molecules which were encapsulated in the hydrogels. We proposed the well use of a thermosensitive mPEG-peptide hydrogel for drug or protein delivery. Incorporation and release of these molecules were evaluated in vitro as proof of concept for drug or protein encapsulation. Taken together, we expect that the hydrogels are excellent biocompatibility and low toxicity alone and as a block copolymer. In the meanwhile, the hydrogels have been demonstrated to support good cell viability, proliferation, and as a source for delivery of growth factors and drugs.

    摘要.............................II Abstract of the Dissertation....III 致謝.............................IV Table of Contents................V List of Figures..................X List of Tables..................XVI List of Schemes.................XVII List of Abbreviations...........XVIII CHAPTER I: General Introduction and Literature Review..........1 1.1 Environment Responsive Hydrogels..........7 1.2 Thermosensitive Polypeptide Hydrogels..........9 1.3 Gelation Mechanism of Hydrogel..........12 1.4 Biomedical Applications of Thermosensitive Hydrogels..........14 CHAPTER II: Oligo(alanine)-modified Methoxy- Poly (ethylene glycol) and Charged oligo(peptide) Material: Synthesis, Characterization, and Biological Properties..........18 2.1 Introduction..........19 2.2 Aim of This Study..........20 2.3 Experimental Section..........22 2.3.1 Materials..........22 2.3.2 Synthesis of mPEG-P(Ala), mPEG-P(Ala)-Lys, and mPEG-P(Ala)-Asp Block Copolymer and Analyzed by Gel Permeation Chromatography (GPC)..........23 2.3.3 1H Nuclear Magnetic Resonance (NMR) Spectroscopy..........25 2.3.4 Dynamic Light Scattering (DLS) and Zeta Potential..........25 2.3.5 Transmission Electron Microscopy (TEM)..........26 2.3.6 Circular Dichroism (CD) Spectroscopy..........26 2.3.7 Characterization of Micelles..........26 2.3.8 Fourier Transformed Infrared Spectroscopy (FT-IR)..........27 2.3.9 Solution-gel (sol-gel) Phase Transition..........27 2.3.10 Rheological Properties..........28 2.3.11 Scanning Electron Microscope (SEM)..........28 2.3.12 Biocompatibility Tests..........28 2.3.13 Degradation Test..........29 2.3.14 Drug Releasing Properties Tests..........29 2.4 Results and Discussion..........30 2.4.1 Synthesis of Block Copolymer..........30 2.4.2 Nano-assembly of mPEG-P(Ala), mPEG-P(Ala)-Lys, and mPEG-P(Ala)-Asp Block Copolymer..........34 2.4.3 The Functional Group and Secondary Structure of mPEG-P(Ala), mPEG-P(Ala)-Lys, and mPEG-P(Ala)-Asp Block Copolymer..........37 2.4.4 Gelation Properties..........41 2.4.5 Biocompatibility Tests..........43 2.4.6 In Vitro Biodegradability..........45 2.4.7 Release of BSA from mPEG-P(Ala) Hydrogels..........46 2.4.8 Release of BSA from Charged Polypeptide Hydrogels..........47 2.4.9 The Release Profile of Model Drug Doxorubicin Encapsulated in mPEG-P(Ala) Hydrogels..........48 2.4.10 The Release Profile of Model Drug Doxorubicin Encapsulated in Charged Polypeptide Hydrogels..........50 2.4.11 The Release Profile of Hydrophobic Drug Tacrolimus Encapsulated in Charged Polypeptide Hydrogels..........51 2.5 Brief Summary..........54 CHAPTER III: Oligo(alanine)-modified Methoxy- Poly (ethylene glycol) Hydrogels: Distinct Microarchitecture and Maintenance of Beta Cell Clusters..........56 3.1 Introduction..........57 3.2 Aim of This Study..........59 3.3 Experimental Section..........59 3.3.1 Biocompatibility Tests..........59 3.3.2 Recombinant Mouse Vascular Endothelial Growth Factor (rmVEGF) Controlled Release..........60 3.3.3 Culture of MIN6 Cells..........60 3.3.4 Glucose-Stimulated Insulin Secretion of Encapsulated MIN6 Cells..........61 3.3.5 Measurement of Insulin..........61 3.3.6 Immunostaining..........62 3.3.7 Animals..........62 3.3.8 MIN6 Cells Transplantations..........62 3.3.9 Immunostaining..........62 3.3.10 Statistics..........62 3.4 Results and Discussion..........63 3.4.1 Biocompatibility Tests..........63 3.4.2 The Distribution of the MIN6 Cell Clusters..........64 3.4.3 Release of VEGF from Hydrogel..........65 3.4.4 Glucose Stimulation Tests for the Encapsulated MIN6 Cells In Vitro..........66 3.4.5 In Vivo Subcutaneous Transplantation of MIN6 Cells Embedded in Hydrogels..........67 3.5 Brief Summary..........69 CHAPTER IV: Polypeptide-modified Thermosensitive Hydrogels: Adjustable Gelation Properties and Their Potential as a Drug Carrier..........70 4.1 Introduction..........71 4.2 Aim of This Study..........72 4.3 Experimental Section..........73 4.3.1 Synthesis of ʟ-alanine N-Carboxyanhydride (Ala-NCA), ʟ-lysine-(Z) N-Carboxyanhydride (Lys-(Z)-NCA), and P–Lys–Ala–PLX Block Copolymer..........73 4.3.2 1H Nuclear Magnetic Resonanc (NMR) Spectroscopy..........74 4.3.3 Fourier Transformed Infrared Spectroscopy (FT-IR)..........74 4.3.4 Scanning Electron Microscope (SEM)..........75 4.3.5 Degradation Test..........75 4.3.6 Biocompatibility Tests..........75 4.3.7 In Vitro Controlled Release of Tacrolimus (FK506)..........76 4.3.8 Drug Release In Vivo..........76 4.4 Results and Discussion..........77 4.4.1 The Synthesis and Characterization of P–Lys–Ala–PLX and Pluronic F-127..........77 4.4.2 Development of Mixed Hydrogel Formulation..........79 4.4.3 Biodegradability Test..........80 4.4.4 Biocompatibility Tests..........82 4.4.5 Tacrolimus Encapsulation and Release..........84 4.5 Brief Summary..........85 CHAPTER V: Conclusions..........87 5. 1 The Biomedical Applications of Amphiphilic Block-copolymers..........88 5. 2 In Situ Gelling-polypeptide Hydrogel Systems for the Subcutaneous Transplantation of MIN6 Cells..........89 5. 3 A Mixed Hydrogel System for Sustained Delivery of Tacrolimus for Immunosuppressive Therapy..........90 REFERENCES..........93 APPENDIX..........103 6.1 Experimental Section..........104 6.2 Supplementary Results..........107

    1. Leenslag, J. W.; Pennings, A. J.; Bos, R. R.; Rozema, F. R.; Boering, G., Resorbable materials of poly(L-lactide). VI. Plates and screws for internal fracture fixation. Biomaterials 1987, 8 (1), 70-3.
    2. Hubbell, J. A., Hydrogel systems for barriers and local drug delivery in the control of wound healing. J. Controlled Release 1996, 39 (2), 305-313.
    3. Chen G.; Ushida T.; Tateishi T., Hybrid Biomaterials for Tissue Engineering: A Preparative Method for PLA or PLGA–Collagen Hybrid Sponges. Adv. Mater. 2000, 12 (6), 455-457.
    4. Vauthier, C.; Dubernet, C.; Fattal, E.; Pinto-Alphandary, H.; Couvreur, P., Poly(alkylcyanoacrylates) as biodegradable materials for biomedical applications. Adv. Drug Deliv. Rev. 2003, 55 (4), 519-548.
    5. Chereddy, K. K.; Vandermeulen, G.; Preat, V., PLGA Based Drug Delivery Systems: Promising carriers for wound healing activity. Wound Repair Regener. 2016, 24 (2), 223-36.
    6. Liu, Z.; Tang, M.; Zhao, J.; Chai, R.; Kang, J., Looking into the Future: Toward advanced 3D biomaterials for stem-cell-based regenerative medicine. Adv. Mater. 2018, 30 (17), e1705388.
    7. Luo, Y.; Lin, X.; Huang, P., 3D Bioprinting of Artificial Tissues: Construction of biomimetic microstructures. Macromol. Biosci. 2018, 18 (6), e1800034.
    8. Saghazadeh, S.; Rinoldi, C.; Schot, M.; Kashaf, S. S.; Sharifi, F.; Jalilian, E.; Nuutila, K.; Giatsidis, G.; Mostafalu, P.; Derakhshandeh, H.; Yue, K.; Swieszkowski, W.; Memic, A.; Tamayol, A.; Khademhosseini, A., Drug delivery systems and materials for wound healing applications. Adv. Drug Deliv. Rev. 2018, 127, 138-166.
    9. DeFrates, K.; Markiewicz, T.; Gallo, P.; Rack, A.; Weyhmiller, A.; Jarmusik, B.; Hu, X., Protein Polymer-Based Nanoparticles: Fabrication and medical applications. Int. J. Mol. Sci. 2018, 19 (6), e1717.
    10. Asri, R. I. M.; Harun, W. S. W.; Samykano, M.; Lah, N. A. C.; Ghani, S. A. C.; Tarlochan, F.; Raza, M. R., Corrosion and surface modification on biocompatible metals: A review. Mater, Sci. Eng. C, Mater. Bio. Appl. 2017, 77, 1261-1274.
    11. Gonzalez-Gutierrez, J.; Cano, S.; Schuschnigg, S.; Kukla, C.; Sapkota, J.; Holzer, C., Additive Manufacturing of Metallic and Ceramic Components by the Material Extrusion of Highly-Filled Polymers: A review and future perspectives. Materials 2018, 11 (5).
    12. Bottini, M.; Mebarek, S.; Anderson, K. L.; Strzelecka-Kiliszek, A.; Bozycki, L.; Simao, A. M. S.; Bolean, M.; Ciancaglini, P.; Pikula, J. B.; Pikula, S.; Magne, D.; Volkmann, N.; Hanein, D.; Millan, J. L.; Buchet, R., Matrix vesicles from chondrocytes and osteoblasts: Their biogenesis, properties, functions and biomimetic models. Biochim. Biophys. Acta 2018, 1862 (3), 532-546.
    13. Peng, S.; Lin, J. Y.; Cheng, M. H.; Wu, C. W.; Chu, I. M., A cell-compatible PEO-PPO-PEO (Pluronic(R))-based hydrogel stabilized through secondary structures. Mater, Sci. Eng. C, Mater. Bio. Appl. 2016, 69, 421-8.
    14. Lin, J.-Y.; Lai, P.-L.; Lin, Y.-K.; Peng, S.; Lee, L.-Y.; Chen, C.-N.; Chu, I. M., A poloxamer-polypeptide thermosensitive hydrogel as a cell scaffold and sustained release depot. Polym. Chem. 2016, 7 (17), 2976-2985.
    15. Yang, K.; Han, Q.; Chen, B.; Zheng, Y.; Zhang, K.; Li, Q.; Wang, J., Antimicrobial hydrogels: promising materials for medical application. Int. J. Nanomed. 2018, 13, 2217-2263.
    16. Fu, J.; Fiegel, J.; Krauland, E.; Hanes, J., New polymeric carriers for controlled drug delivery following inhalation or injection. Biomaterials 2002, 23 (22), 4425-33.
    17. Ikada, Y.; Tsuji, H., Biodegradable polyesters for medical and ecological applications. Macromol. Rapid Commun. 2000, 21 (3), 117-132.
    18. Nguyen, M. K.; Alsberg, E., Bioactive factor delivery strategies from engineered polymer hydrogels for therapeutic medicine. Prog. Polym. Sci. 2014, 39 (7), 1236-1265.
    19. Tibbitt, M. W.; Anseth, K. S., Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnol. Bioeng. 2009, 103 (4), 655-63.
    20. Jones, M.-C.; Leroux, J.-C., Polymeric micelles – a new generation of colloidal drug carriers. Eur. J. Pharm. Biopharm. 1999, 48 (2), 101-111.
    21. Nguyen, M. K.; Lee, D. S., Injectable biodegradable hydrogels. Macromol. Biosci. 2010, 10 (6), 563-79.
    22. Alves Cardoso, D.; van den Beucken, J. J. J. P.; Both, L. L. H.; Bender, J.; Jansen, J. A.; Leeuwenburgh, S. C. G., Gelation and biocompatibility of injectable alginate–calcium phosphate gels for bone regeneration. J. Biomed. Mater. Res. Part A 2013, 102 (3), 808-817.
    23. Karakasyan, C.; Legros, M.; Lack, S.; Brunel, F.; Maingault, P.; Ducouret, G.; Hourdet, D., Cold gelation of alginates induced by monovalent cations. Biomacromolecules 2010, 11 (11), 2966-75.
    24. Klouda, L., Thermoresponsive hydrogels in biomedical applications: A seven-year update. Eur. J. Pharm. Biopharm. 2015, 97 (Pt B), 338-49.
    25. Ko, D. Y.; Shinde, U. P.; Yeon, B.; Jeong, B., Recent progress of in situ formed gels for biomedical applications. Prog. Polym. Sci. 2013, 38 (3), 672-701.
    26. Drury, J. L.; Mooney, D. J., Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 2003, 24 (24), 4337-51.
    27. Zhang, S.; Anderson, M. A.; Ao, Y.; Khakh, B. S.; Fan, J.; Deming, T. J.; Sofroniew, M. V., Tunable diblock copolypeptide hydrogel depots for local delivery of hydrophobic molecules in healthy and injured central nervous system. Biomaterials 2014, 35 (6), 1989-2000.
    28. Singh, N. K.; Lee, D. S., In situ gelling pH- and temperature-sensitive biodegradable block copolymer hydrogels for drug delivery. J. Controlled Release 2014, 193, 214-27.
    29. Wang, L. S.; Lee, F.; Lim, J.; Du, C.; Wan, A. C.; Lee, S. S.; Kurisawa, M., Enzymatic conjugation of a bioactive peptide into an injectable hyaluronic acid-tyramine hydrogel system to promote the formation of functional vasculature. Acta Biomater. 2014, 10 (6), 2539-50.
    30. Cong, H.; Li, L.; Zheng, S., Poly(N-isopropylacrylamide)-block-poly(vinyl pyrrolidone) block copolymer networks: Synthesis and rapid thermoresponse of hydrogels. Polymer 2013, 54 (4), 1370-1380.
    31. Kopecek, J., Hydrogel biomaterials: a smart future? Biomaterials 2007, 28 (34), 5185-92.
    32. Schild, H. G.; Tirrell, D. A., Microcalorimetric detection of lower critical solution temperatures in aqueous polymer solutions. The J. Phys. Chem. 1990, 94 (10), 4352-4356.
    33. Boustta, M.; Colombo, P. E.; Lenglet, S.; Poujol, S.; Vert, M., Versatile UCST-based thermoresponsive hydrogels for loco-regional sustained drug delivery. J. Controlled Release 2014, 174, 1-6.
    34. A Ward, M.; Georgiou, T., Thermoresponsive Polymers for Biomedical Applications. Polymers 2011, Vol. 3.
    35. Jeong, B.; Kim, S. W.; Bae, Y. H., Thermosensitive sol–gel reversible hydrogels. Adv. Drug Deliv. Rev. 2012, 64, 154-162.
    36. Ward, M. A.; Georgiou, T. K., Thermoresponsive Polymers for Biomedical Applications. Polymers 2011, 3 (3).
    37. Moon, H. J.; Ko du, Y.; Park, M. H.; Joo, M. K.; Jeong, B., Temperature-responsive compounds as in situ gelling biomedical materials. Chem. Soc. Rev. 2012, 41 (14), 4860-83.
    38. Chung, E.; Ricles, L. M.; Stowers, R. S.; Nam, S. Y.; Emelianov, S. Y.; Suggs, L. J., Multifunctional nanoscale strategies for enhancing and monitoring blood vessel regeneration. Nano Today 2012, 7 (6), 514-531.
    39. Hoffman, A. S., Hydrogels for biomedical applications. Adv. Drug Deliv. Rev. 2002, 54 (1), 3-12.
    40. He, C.; Kim, S. W.; Lee, D. S., In situ gelling stimuli-sensitive block copolymer hydrogels for drug delivery. J. Controlled Release 2008, 127 (3), 189-207.
    41. Hennink, W. E.; van Nostrum, C. F., Novel crosslinking methods to design hydrogels. Adv. Drug Deliv. Rev. 2002, 54 (1), 13-36.
    42. Brizzolara, D.; Cantow, H.-J.; Diederichs, K.; Keller, E.; Domb, A. J., Mechanism of the Stereocomplex Formation between Enantiomeric Poly(lactide)s. Macromolecules 1996, 29 (1), 191-197.
    43. Dankers, P. Y.; Harmsen, M. C.; Brouwer, L. A.; van Luyn, M. J.; Meijer, E. W., A modular and supramolecular approach to bioactive scaffolds for tissue engineering. Nat. Mater. 2005, 4 (7), 568-74.
    44. Jeong, B.; Bae, Y. H.; Kim, S. W., Thermoreversible Gelation of PEG−PLGA−PEG Triblock Copolymer Aqueous Solutions. Macromolecules 1999, 32 (21), 7064-7069.
    45. Shim, W. S.; Yoo, J. S.; Bae, Y. H.; Lee, D. S., Novel Injectable pH and Temperature Sensitive Block Copolymer Hydrogel. Biomacromolecules 2005, 6 (6), 2930-2934.
    46. Saghazadeh, S.; Rinoldi, C.; Schot, M.; Kashaf, S. S.; Sharifi, F.; Jalilian, E.; Nuutila, K.; Giatsidis, G.; Mostafalu, P.; Derakhshandeh, H.; Yue, K.; Swieszkowski, W.; Memic, A.; Tamayol, A.; Khademhosseini, A., Drug delivery systems and materials for wound healing applications. Adv. Drug Deliv. Rev. 2018, 127, 138-166.
    47. Shim, W. S.; Yoo, J. S.; Bae, Y. H.; Lee, D. S., Novel injectable pH and temperature sensitive block copolymer hydrogel. Biomacromolecules 2005, 6 (6), 2930-4.
    48. Ruel-Gariépy, E.; Leroux, J.-C., In situ-forming hydrogels—review of temperature-sensitive systems. Eur. J. Pharm. Biopharm. 2004, 58 (2), 409-426.
    49. Zhang, S.; Alvarez, D. J.; Sofroniew, M. V.; Deming, T. J., Design and synthesis of nonionic copolypeptide hydrogels with reversible thermoresponsive and tunable physical properties. Biomacromolecules 2015, 16 (4), 1331-40.
    50. Chiang, P.-R.; Lin, T.-Y.; Tsai, H.-C.; Chen, H.-L.; Liu, S.-Y.; Chen, F.-R.; Hwang, Y.-S.; Chu, I. M., Thermosensitive Hydrogel from Oligopeptide-Containing Amphiphilic Block Copolymer: Effect of Peptide Functional Group on Self-Assembly and Gelation Behavior. Langmuir : J. surf. colloi. 2013, 29 (51), 15981-15991.
    51. Vandermeulen, G. W. M.; Tziatzios, C.; Klok, H.-A., Reversible Self-Organization of Poly(ethylene glycol)-Based Hybrid Block Copolymers Mediated by a De Novo Four-Stranded α-Helical Coiled Coil Motif. Macromolecules 2003, 36 (11), 4107-4114.
    53. Yokoi, H.; Kinoshita, T.; Zhang, S., Dynamic reassembly of peptide RADA16 nanofiber scaffold. Proc. Natl. Acad. Sci. U. S. A. 2005, 102 (24), 8414-8419.
    54. Petka, W. A.; Harden, J. L.; McGrath, K. P.; Wirtz, D.; Tirrell, D. A., Reversible hydrogels from self-assembling artificial proteins. Science 1998, 281 (5375), 389-92.
    55. Nowak, A. P.; Breedveld, V.; Pakstis, L.; Ozbas, B.; Pine, D. J.; Pochan, D.; Deming, T. J., Rapidly recovering hydrogel scaffolds from self-assembling diblock copolypeptide amphiphiles. Nature 2002, 417 (6887), 424-8.
    56. Hartgerink, J. D.; Beniash, E.; Stupp, S. I., Self-assembly and mineralization of peptide-amphiphile nanofibers. Science 2001, 294 (5547), 1684-8.
    57. Huang, J.; Hastings, C. L.; Duffy, G. P.; Kelly, H. M.; Raeburn, J.; Adams, D. J.; Heise, A., Supramolecular hydrogels with reverse thermal gelation properties from (oligo)tyrosine containing block copolymers. Biomacromolecules 2013, 14 (1), 200-6.
    58. Oh, H. J.; Joo, M. K.; Sohn, Y. S.; Jeong, B., Secondary Structure Effect of Polypeptide on Reverse Thermal Gelation and Degradation of l/dl-Poly(alanine)–Poloxamer–l/dl-Poly(alanine) Copolymers. Macromolecules 2008, 41 (21), 8204-8209.
    59. Roberts, J. J.; Elder, R. M.; Neumann, A. J.; Jayaraman, A.; Bryant, S. J., Interaction of hyaluronan binding peptides with glycosaminoglycans in poly(ethylene glycol) hydrogels. Biomacromolecules 2014, 15 (4), 1132-41.
    60. Cai, L.; Dinh, C. B.; Heilshorn, S. C., One-pot synthesis of elastin-like polypeptide hydrogels with grafted VEGF-mimetic peptides. Biomater. Sci. 2014, 2 (5), 757-765.
    61. Raeburn, J.; Zamith Cardoso, A.; Adams, D. J., The importance of the self-assembly process to control mechanical properties of low molecular weight hydrogels. Chem. Soc. Rev. 2013, 42 (12), 5143-56.
    62. Yu, L.; Chang, G.; Zhang, H.; Ding, J., Temperature-induced spontaneous sol–gel transitions of poly(D,L-lactic acid-co-glycolic acid)-b-poly(ethylene glycol)-b-poly(D,L-lactic acid-co-glycolic acid) triblock copolymers and their end-capped derivatives in water. Journal of Polymer Science Part A: Polym. Chem. 2007, 45 (6), 1122-1133.
    63. Thambi, T.; Phan, V. H.; Lee, D. S., Stimuli-Sensitive Injectable Hydrogels Based on Polysaccharides and Their Biomedical Applications. Macromol. Rapid. Commun. 2016, 37 (23), 1881-1896.
    64. Uhrich, K. E.; Cannizzaro, S. M.; Langer, R. S.; Shakesheff, K. M., Polymeric Systems for Controlled Drug Release. Chem. Rev. 1999, 99 (11), 3181-3198.
    65. Mehrotra, N.; Gupta, M.; Kovar, A.; Meibohm, B., The role of pharmacokinetics and pharmacodynamics in phosphodiesterase-5 inhibitor therapy. Int. J. Impotence Res. 2007, 19 (3), 253-64.
    66. Chen, R. R.; Mooney, D. J., Polymeric growth factor delivery strategies for tissue engineering. Pharm. Res. 2003, 20 (8), 1103-12.
    67. Weaver, J. D.; Headen, D. M.; Aquart, J.; Johnson, C. T.; Shea, L. D.; Shirwan, H.; García, A. J., Vasculogenic hydrogel enhances islet survival, engraftment, and function in leading extrahepatic sites. Sci. Adv. 2017, 3 (6).
    68. Louis-Jeune, C.; Andrade-Navarro, M. A.; Perez-Iratxeta, C., Prediction of protein secondary structure from circular dichroism using theoretically derived spectra. Proteins 2012, 80 (2), 374-81.
    69. Ryan, E. A.; Paty, B. W.; Senior, P. A.; Bigam, D.; Alfadhli, E.; Kneteman, N. M.; Lakey, J. R. T.; Shapiro, A. M. J., Five-Year Follow-Up After Clinical Islet Transplantation. Diabetes 2005, 54 (7), 2060.
    70. Sakata, N.; Obenaus, A.; Chan, N. K.; Mace, J.; Chinnock, R.; Hathout, E., Factors affecting islet graft embolization in the liver of diabetic mice. Islets 2009, 1 (1), 26-33.
    71. Rajab, A., Islet transplantation: alternative sites. Curr. Diabetes Rep. 2010, 10 (5), 332-7.
    72. Kawahara, T.; Kin, T.; Shapiro, A. M., A comparison of islet autotransplantation with allotransplantation and factors elevating acute portal pressure in clinical islet transplantation. J. Hepato-Biliary-Pancreatic Sci. 2012, 19 (3), 281-8.
    73. Kawahara, T.; Kin, T.; Kashkoush, S.; Gala-Lopez, B.; Bigam, D. L.; Kneteman, N. M.; Koh, A.; Senior, P. A.; Shapiro, A. M., Portal vein thrombosis is a potentially preventable complication in clinical islet transplantation. Am. J. Transplant. 2011, 11 (12), 2700-7.
    74. Juang, J. H.; Hsu, B. R.; Kuo, C. H., Islet transplantation at subcutaneous and intramuscular sites. Transplant. Proc. 2005, 37 (8), 3479-81.
    75. Sakata, N.; Aoki, T.; Yoshimatsu, G.; Tsuchiya, H.; Hata, T.; Katayose, Y.; Egawa, S.; Unno, M., Strategy for clinical setting in intramuscular and subcutaneous islet transplantation. Diabetes/Metab. Res. Rev. 2014, 30 (1), 1-10.
    76. Tibbitt, M. W.; Anseth, K. S., Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnol. Bioeng. 2009, 103 (4), 655-663.
    77. Nguyen, M. K.; Lee, D. S., Injectable Biodegradable Hydrogels. Macromol. Biosci. 2010, 10 (6), 563-579.
    78. Deng, C.; Vulesevic, B.; Ellis, C.; Korbutt, G. S.; Suuronen, E. J., Vascularization of collagen-chitosan scaffolds with circulating progenitor cells as potential site for islet transplantation. J. Controlled Release 2011, 152 Suppl 1, e196-8.
    79. Kim, J. S.; Lim, J. H.; Nam, H. Y.; Lim, H. J.; Shin, J. S.; Shin, J. Y.; Ryu, J. H.; Kim, K.; Kwon, I. C.; Jin, S. M.; Kim, H. R.; Kim, S. J.; Park, C. G., In situ application of hydrogel-type fibrin-islet composite optimized for rapid glycemic control by subcutaneous xenogeneic porcine islet transplantation. J. Controlled Release 2012, 162 (2), 382-90.
    80. Vlahos, A. E.; Cober, N.; Sefton, M. V., Modular tissue engineering for the vascularization of subcutaneously transplanted pancreatic islets. Proc. Natl. Acad. Sci. U. S. A. 2017, 114 (35), 9337-9342.
    81. Hou, S.; Lake, R.; Park, S.; Edwards, S.; Jones, C.; Jeong, K. J., Injectable Macroporous Hydrogel Formed by Enzymatic Cross-Linking of Gelatin Microgels. ACS Appl. Bio Mater. 2018, 1 (5), 1430-1439.
    82. Welzel, P. B.; Grimmer, M.; Renneberg, C.; Naujox, L.; Zschoche, S.; Freudenberg, U.; Werner, C., Macroporous StarPEG-Heparin Cryogels. Biomacromolecules 2012, 13 (8), 2349-2358.
    83. Qutachi, O.; Wright, E. J.; Bray, G.; Hamid, O. A.; Rose, F.; Shakesheff, K. M.; Delcassian, D., Improved delivery of PLGA microparticles and microparticle-cell scaffolds in clinical needle gauges using modified viscosity formulations. Int. J. Pharm. 2018, 546 (1-2), 272-278.
    84. Guo, Q.; Liu, C.; Hai, B.; Ma, T.; Zhang, W.; Tan, J.; Fu, X.; Wang, H.; Xu, Y.; Song, C., Chitosan conduits filled with simvastatin/Pluronic F-127 hydrogel promote peripheral nerve regeneration in rats. Journal of Biomedical Materials Research. Part B, Appl. Biomater. 2018, 106 (2), 787-799.
    85. Nguyen, M. K.; Alsberg, E., Bioactive factor delivery strategies from engineered polymer hydrogels for therapeutic medicine. Prog. Polym. Sci. 2014, 39 (7), 1236-1265.
    86. Huettner, N.; Dargaville, T. R.; Forget, A., Discovering Cell-Adhesion Peptides in Tissue Engineering: Beyond RGD. Trends B iotechnol. 2018, 36 (4), 372-383.
    87. Fukuda, Y.; Akagi, T.; Asaoka, T.; Eguchi, H.; Sasaki, K.; Iwagami, Y.; Yamada, D.; Noda, T.; Kawamoto, K.; Gotoh, K.; Kobayashi, S.; Mori, M.; Doki, Y.; Akashi, M., Layer-by-layer cell coating technique using extracellular matrix facilitates rapid fabrication and function of pancreatic beta-cell spheroids. Biomaterials 2018, 160, 82-91.
    88. Peng, S.; Wu, C.-W.; Lin, J.-Y.; Yang, C.-Y.; Cheng, M.-H.; Chu, I. M., Promoting chondrocyte cell clustering through tuning of a poly(ethylene glycol)-poly(peptide) thermosensitive hydrogel with distinctive microarchitecture. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 76, 181-189.
    89. Hoare, T. R.; Kohane, D. S., Hydrogels in drug delivery: Progress and challenges. Polymer 2008, 49 (8), 1993-2007.
    90. Wichterle, O.; M, D., Hydrophilic Gels for Biological Use. Nature 1960, Vol. 185, p 117-118.
    91. Drury, J. L.; Mooney, D. J., Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 2003, 24 (24), 4337-4351.
    92. Kopeček, J., Hydrogel biomaterials: A smart future? Biomaterials 2007, 28 (34), 5185-5192.
    93. Ko, D. Y.; Shinde, U.; Yeon, B.; Jeong, B., Recent progress of in situ formed gels for biomedical applications. Mater. Sci. 2013; Vol. 38, p 672–701.
    94. Jeong, Y.; Joo, M. K.; Bahk, K. H.; Choi, Y. Y.; Kim, H. T.; Kim, W. K.; Lee, H. J.; Sohn, Y. S.; Jeong, B., Enzymatically degradable temperature-sensitive polypeptide as a new in-situ gelling biomaterial. J. Controlled Release 2009, 137 (1), 25-30.
    95. Boustta, M.; Colombo, P.-E.; Lenglet, S.; Poujol, S.; Vert, M., Versatile UCST-based thermoresponsive hydrogels for loco-regional sustained drug delivery. J. Controlled Release 2014, 174, 1-6.
    96. Klouda, L., Thermoresponsive hydrogels in biomedical applications: A seven-year update. Eur. J. Pharm. Biopharm. 2015, 97, 338-349.
    97. Yu, L.; Ding, J., Injectable hydrogels as unique biomedical materials. Chem. Soc. Rev. 2008, 37 (8), 1473-81.
    98. Yeon, B.; Park, M. H.; Moon, H. J.; Kim, S. J.; Cheon, Y. W.; Jeong, B., 3D culture of adipose-tissue-derived stem cells mainly leads to chondrogenesis in poly(ethylene glycol)-poly(L-alanine) diblock copolymer thermogel. Biomacromolecules 2013, 14 (9), 3256-66.
    99. Peng, S.; Lai, Z. T.; Hong, D. W.; Chu, I. M.; Lai, P. L., Controlled release of strontium through neutralization reaction within a methoxy(polyethylene glycol)-polyester hydrogel. J. Appl. Biomater. Funct. Mater. 2017, 15 (2), e162-e169.
    100. Yun, E. J.; Yon, B.; Joo, M. K.; Jeong, B., Cell therapy for skin wound using fibroblast encapsulated poly(ethylene glycol)-poly(L-alanine) thermogel. Biomacromolecules 2012, 13 (4), 1106-11.
    101. Cheng, Y.; He, C.; Xiao, C.; Ding, J.; Zhuang, X.; Huang, Y.; Chen, X., Decisive role of hydrophobic side groups of polypeptides in thermosensitive gelation. Biomacromolecules 2012, 13 (7), 2053-9.
    102. Cui, H.; Zhuang, X.; He, C.; Wei, Y.; Chen, X., High performance and reversible ionic polypeptide hydrogel based on charge-driven assembly for biomedical applications. Acta Biomater. 2015, 11, 183-90.
    103. Choi, Y. Y.; Jang, J. H.; Park, M. H.; Choi, B. G.; Chi, B.; Jeong, B., Block length affects secondary structure, nanoassembly and thermosensitivity of poly(ethylene glycol)-poly(l-alanine) block copolymers. J. Mater. Chem. 2010, 20 (17), 3416-3421.
    104. Xu, W.; Ling, P.; Zhang, T., Toward immunosuppressive effects on liver transplantation in rat model: tacrolimus loaded poly(ethylene glycol)-poly(D,L-lactide) nanoparticle with longer survival time. Int. J. Pharm. 2014, 460 (1-2), 173-80.
    105. Tajdaran, K.; Shoichet, M. S.; Gordon, T.; Borschel, G. H., A novel polymeric drug delivery system for localized and sustained release of tacrolimus (FK506). Biotechnol. Bioeng. 2015, 112 (9), 1948-53.
    106. Gajanayake, T.; Olariu, R.; Leclere, F. M.; Dhayani, A.; Yang, Z.; Bongoni, A. K.; Banz, Y.; Constantinescu, M. A.; Karp, J. M.; Vemula, P. K.; Rieben, R.; Vogelin, E., A single localized dose of enzyme-responsive hydrogel improves long-term survival of a vascularized composite allograft. Sci. Transl. Med. 2014, 6 (249), 249ra110.
    107. 黃韻芬; 賴彬卿; 黃雅卿; 蔣玉韶; 尤慧玲; 林佳霓; 甯孝真, 建立超效能液相層析-串聯式質譜儀定量四種抗排斥藥物(tacrolimus, sirolimus, everolimus, cyclosporine)的方法. J. Biomed. & Lab. Sci. 2015, 27 (2), 61-68.
    108. Kojarunchitt, T.; Hook, S.; Rizwan, S.; Rades, T.; Baldursdottir, S., Development and characterisation of modified poloxamer 407 thermoresponsive depot systems containing cubosomes. Int. J. Pharm. 2011, 408 (1-2), 20-6.
    109. Kojima, R.; Yoshida, T.; Tasaki, H.; Umejima, H.; Maeda, M.; Higashi, Y.; Watanabe, S.; Oku, N., Release mechanisms of tacrolimus-loaded PLGA and PLA microspheres and immunosuppressive effects of the microspheres in a rat heart transplantation model. Int. J. Pharm. 2015, 492 (1-2), 20-7.
    110. Peng S., Lin JY., Cheng MH., Wu CW., Chu IM., A cell-compatible PEO-PPO-PEO (Pluronic®)-based hydrogel stabilized through secondary structures. Mater Sci Eng C Mater Biol Appl. 2016, 69:421-8.

    QR CODE