研究生: |
王俊文 Chun-Wen Wang |
---|---|
論文名稱: |
具良好準直性氧化鋅奈米線之成長 Growth of Well-Aligned ZnO Nanorods |
指導教授: |
陳力俊
Lih-Juann Chen |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2007 |
畢業學年度: | 96 |
語文別: | 英文 |
論文頁數: | 42 |
中文關鍵詞: | 氧化鋅 、良好準直性 、奈米線 、陰極發光 、菱形 |
外文關鍵詞: | ZnO, well-aligned, nanorods/nanowires, cathodoluminescence, diamond-shaped |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
藉由使用不同的原料以及製程溫度,可以合成出平面頂端與尖狀頂端的規則排列氧化鋅奈米線;二維對稱的菱形氧化鋅奈米柱也成功地合成出來,本論文並將探討相關成長機制。
The growth of well-aligned ZnO nanowires via vapor-liquid-solid (VLS) has been investigated. By using different source materials under different peak temperature, planar-tip and tapered-tip well-aligned ZnO nanorods were synthesized. Moreover, the unique diamond-shaped ZnO nanopillars with two-fold symmetry were also synthesized. The possible growth mechanisms are discussed.
1. A.P. Alivisatos, "Semiconductor clusters, nanocrystals, and quantum dots," Science 271, 933-937 (1996).
2. C.B. Murray, C.R. Kagan, and M.G. Bawendi, "Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies," Annual Review of Materials Science 30, 545-610 (2000).
3. J.M. Krans, J.M. Vanruitenbeek, V.V. Fisun, I.K. Yanson, and L.J. Dejongh, "The signature of conductance quantization in metallic point contacts," Nature 375, 767-769 (1995).
4. K.K. Likharev and T. Claeson, "Single electronics," Scientific American 266, 80-85 (1992).
5. G. Markovich, C.P. Collier, S.E. Henrichs, F. Remacle, R.D. Levine, and J.R. Heath, "Architectonic quantum dot solids," Accounts of Chemical Research 32, 415-423 (1999).
6. M. Narihiro, G. Yusa, Y. Nakamura, T. Noda, and H. Sakaki, "Resonant tunneling of electrons via 20 nm scale InAs quantum dot and magnetotunneling spectroscopy of its electronic states," Applied Physics Letters 70, 105-107 (1997).
7. J. Chen, M.A. Reed, A.M. Rawlett, and J.M. Tour, "Large on-off ratios and negative differential resistance in a molecular electronic device," Science 286, 1550-1552 (1999).
8. C. Papadopoulos, A. Rakitin, J. Li, A.S. Vedeneev, and J.M. Xu, "Electronic transport in Y-junction carbon nanotubes," Physical Review Letters 85, 3476-3479 (2000).
9. M.T. Bjork, B.J. Ohlsson, C. Thelander, A.I. Persson, K. Deppert, L.R. Wallenberg, and L. Samuelson, "Nanowire resonant tunneling diodes," Applied Physics Letters 81, 4458-4460 (2002).
10. J.D. Meindl, Q. Chen, and J.A. Davis, "Limits on silicon nanoelectronics for terascale integration," Science 293, 2044-2049 (2001).
11. C.M. Lieber, "The incredible shrinking circuit - Researchers have built nanotransistors and nanowires. Now they just need to find a way to put them all together," Scientific American 285, 58-64 (2001).
12. V. Balzani, A. Credi, and M. Venturi, "The bottom-up approach to molecular-level devices and machines," Chemistry-a European Journal 8, 5524-5532 (2002).
13. K.E. Drexler, "Engines of creation: the coming era of nanotechnology," Anchor Press, New Year (1986).
14. K.E. Drexler, "Machine-phase nanotechnology - A molecular nanotechnology pioneer predicts that the tiniest robots will revolutionize manufacturing and transform society," Scientific American 285, 74-75 (2001).
15. C. Joachim, J.K. Gimzewski, and A. Aviram, "Electronics using hybrid-molecular and mono-molecular devices," Nature 408, 541-548 (2000).
16. C.P. Collier, G. Mattersteig, E.W. Wong, Y. Luo, K. Beverly, J. Sampaio, F.M. Raymo, J.F. Stoddart, and J.R. Heath, "A [2]catenane-based solid state electronically reconfigurable switch," Science 289, 1172-1175 (2000).
17. M.A. Reed, J. Chen, A.M. Rawlett, D.W. Price, and J.M. Tour, "Molecular random access memory cell," Applied Physics Letters 78, 3735-3737 (2001).
18. D.L. Klein, R. Roth, A.K.L. Lim, A.P. Alivisatos, and P.L. McEuen, "A single-electron transistor made from a cadmium selenide nanocrystal," Nature 389, 699-701 (1997).
19. M.H. Devoret and R.J. Schoelkopf, "Amplifying quantum signals with the single-electron transistor," Nature 406, 1039-1046 (2000).
20. S. Iijima, "Helical microtubules of graphitic carbon," Nature 354, 56-58 (1991).
21. C. Dekker, "Carbon nanotubes as molecular quantum wires," Physics Today 52, 22-28 (1999).
22. Y. Zhang, K. Suenaga, C. Colliex, and S. Iijima, "Coaxial nanocable: Silicon carbide and silicon oxide sheathed with boron nitride and carbon," Science 281, 973-975 (1998).
23. Y. Zhang, T. Ichihashi, E. Landree, F. Nihey, and S. Iijima, "Heterostructures of single-walled carbon nanotubes and carbide nanorods," Science 285, 1719-1722 (1999).
24. J.T. Hu, T.W. Odom, and C.M. Lieber, "Chemistry and physics in one dimension: Synthesis and properties of nanowires and nanotubes," Accounts of Chemical Research 32, 435-445 (1999).
25. Y. Cui and C.M. Lieber, "Functional nanoscale electronic devices assembled using silicon nanowire building blocks," Science 291, 851-853 (2001).
26. Y. Huang, X.F. Duan, Y. Cui, L.J. Lauhon, K.H. Kim, and C.M. Lieber, "Logic gates and computation from assembled nanowire building blocks," Science 294, 1313-1317 (2001).
27. W.Q. Han, S.S. Fan, Q.Q. Li, and Y.D. Hu, "Synthesis of gallium nitride nanorods through a carbon nanotube-confined reaction," Science 277, 1287-1289 (1997).
28. J.T. Hu, L.S. Li, W.D. Yang, L. Manna, L.W. Wang, and A.P. Alivisatos, "Linearly polarized emission from colloidal semiconductor quantum rods," Science 292, 2060-2063 (2001).
29. W.I. Park, G.C. Yi, M. Kim, and S.J. Pennycook, "Quantum confinement observed in ZnO/ZnMgO nanorod heterostructures," Advanced Materials 15, 526-529 (2003).
30. P.G. Collins and P. Avouris, "Nanotubes for electronics," Scientific American 283, 62-69 (2000).
31. M.S. Gudiksen, L.J. Lauhon, J. Wang, D.C. Smith, and C.M. Lieber, "Growth of nanowire superlattice structures for nanoscale photonics and electronics," Nature 415, 617-620 (2002).
32. Y. Cui, X.F. Duan, J.T. Hu, and C.M. Lieber, "Doping and electrical transport in silicon nanowires," Journal of Physical Chemistry B 104, 5213-5216 (2000).
33. X.F. Duan, Y. Huang, Y. Cui, J.F. Wang, and C.M. Lieber, "Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices," Nature 409, 66-69 (2001).
34. M.S. Gudiksen, J.F. Wang, and C.M. Lieiber, "Synthetic control of the diameter and length of single crystal semiconductor nanowires," Journal of Physical Chemistry B 105, 4062-4064 (2001).
35. X.F. Duan and C.M. Lieber, "General synthesis of compound semiconductor nanowires," Advanced Materials 12, 298-302 (2000).
36. M.H. Huang, S. Mao, H. Feick, H.Q. Yan, Y.Y. Wu, H. Kind, E. Weber, R. Russo, and P.D. Yang, "Room-temperature ultraviolet nanowire nanolasers," Science 292, 1897-1899 (2001).
37. M.S. Arnold, P. Avouris, Z.W. Pan, and Z.L. Wang, "Field-effect transistors based on single semiconducting oxide nanobelts," Journal of Physical Chemistry B 107, 659-663 (2003).
38. W.I. Park, G.C. Yi, J.W. Kim, and S.M. Park, "Schottky nanocontacts on ZnO nanorod arrays," Applied Physics Letters 82, 4358-4360 (2003).
39. J.M. Bao, M.A. Zimmler, F. Capasso, X.W. Wang, and Z.F. Ren, "Broadband ZnO single-nanowire light-emitting diode," Nano Letters 6, 1719-1722 (2006).
40. M.H. Zhao, Z.L. Wang, and S.X. Mao, "Piezoelectric characterization of individual zinc oxide nanobelt probed by piezoresponse force microscope," Nano Letters 4, 587-590 (2004).
41. X.D. Wang, J.H. Song, J. Liu, and Z.L. Wang, "Direct-current nanogenerator driven by ultrasonic waves," Science 316, 102-105 (2007).
42. H. He, C.L. Hsin, J. Liu, L.J. Chen, and Z.L. Wang, "Piezoelectric gated diode of a single ZnO nanowire," Advanced Materials 19, 781-784 (2007).
43. X.D. Wang, J. Zhou, J.H. Song, J. Liu, N.S. Xu, and Z.L. Wang, "Piezoelectric field effect transistor and nanoforce sensor based on a single ZnO nanowire," Nano Letters 6, 2768-2772 (2006).
44. B.A. Buchine, W.L. Hughes, F.L. Degertekin, and Z.L. Wang, "Bulk acoustic resonator based on piezoelectric ZnO belts," Nano Letters 6, 1155-1159 (2006).
45. R.S. Wagner and W.C. Ellis, "Vapor-liquid-solid mechanism of single crystal growth," Applied Physics Letters 4, 89-90 (1964).
46. J. Westwater, D.P. Gosain, S. Tomiya, S. Usui, and H. Ruda, "Growth of silicon nanowires via gold/silane vapor-liquid-solid reaction," Journal of Vacuum Science & Technology B 15, 554-557 (1997).
47. A.M. Morales and C.M. Lieber, "A laser ablation method for the synthesis of crystalline semiconductor nanowires," Science 279, 208-211 (1998).
48. Y.Y. Wu and P.D. Yang, "Direct observation of vapor-liquid-solid nanowire growth," Journal of the American Chemical Society 123, 3165-3166 (2001).
49. X.C. Wu, W.H. Song, W.D. Huang, M.H. Pu, B. Zhao, Y.P. Sun, and J.J. Du, "Crystalline gallium oxide nanowires: intensive blue light emitters," Chemical Physics Letters 328, 5-9 (2000).
50. Z.W. Pan, Z.R. Dai, and Z.L. Wang, "Nanobelts of semiconducting oxides," Science 291, 1947-1949 (2001).
51. R.Q. Zhang, Y. Lifshitz, and S.T. Lee, "Oxide-assisted growth of semiconducting nanowires," Advanced Materials 15, 635-640 (2003).
52. H.Z. Zhang, Y.C. Kong, Y.Z. Wang, X. Du, Z.G. Bai, J.J. Wang, D.P. Yu, Y. Ding, Q.L. Hang, and S.Q. Feng, "Ga2O3 nanowires prepared by physical evaporation," Solid State Communications 109, 677-682 (1999).
53. J.H. Song, X.D. Wang, E. Riedo, and Z.L. Wang, "Systematic study on experimental conditions for large-scale growth of aligned ZnO nanwires on nitrides," Journal of Physical Chemistry B 109, 9869-9872 (2005).
54. C.Y. Geng, Y. Jiang, Y. Yao, X.M. Meng, J.A. Zapien, C.S. Lee, Y. Lifshitz, and S.T. Lee, "Well-aligned ZnO nanowire arrays fabricated on silicon substrates," Advanced Functional Materials 14, 589-594 (2004).
55. M.H. Huang, Y.Y. Wu, H. Feick, N. Tran, E. Weber, and P.D. Yang, "Catalytic growth of zinc oxide nanowires by vapor transport," Advanced Materials 13, 113-116 (2001).
56. R.C. Wang, C.P. Liu, J.L. Huang, and S.J. Chen, "ZnO hexagonal arrays of nanowires grown on nanorods," Applied Physics Letters 86, 251104-1-3 (2005).