簡易檢索 / 詳目顯示

研究生: 妲妮拉
Nadia Daniela Rivera Torres
論文名稱: 有限長度之一維SSH模型中邊緣態之研究
Study of the edge modes of a finite one-dimensional SSH chain with and without on-site potential
指導教授: 李瑞光
Lee, Ray-Kuang
口試委員: 黃一平
Huang, Yi-ping
郭華丞
Kuo, Watson
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 65
中文關鍵詞: Su-Schrieffer-Heeger (SSH) 模型on-site potential拓樸非普通零能量邊緣態inverse participation ratio (IPR)群速度傳播長度失序
外文關鍵詞: Su-Schrieffer-Heeger (SSH) model, on-site potential, topologically non-trivial zero-energy edge modes, inverse participation ratio (IPR), group velocity, transport length (Lc), disorder
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討了SSH模型,它是可能發生非普通拓樸相變的最簡單模型,用來描
    述在一維晶格中移動,具有交錯跳躍震幅( and ) 的極化費米子。我們探索了有
    限以及無限模型的幾個情況,並取得了兩種情況的能譜。本研究強調在有限情
    況下,晶格點數量L的宇稱的重要性。因為當晶格點數量為偶數時,有限系統
    會出現拓樸特徵,所以本研究將會針對此情況進行探討。
    利用IPR,我們對拓樸非普通的零能量邊緣態之有限一維SSH鏈進行了完整的
    研究。有別於一般的認知,我們發現它存在一個遠大於穿透深度臨界長度,也
    就是。當小於臨界長度時,傳播的訊息是可被拓樸保護的。因為在有限大小系
    統的邊緣態之間的耦合能量不為零,所以邊緣態並非完全獨立於鏈的兩端。如
    此一來,我們可以利用IPR在波的局域化中找到劇烈的變化,這支持了此特徵
    傳播長度的存在。為了實驗上的驗證,我們結合了開口共振腔跟和其互補的共
    振腔,與可以控制的跳躍震幅來實作SSH模型。我們利用脈衝激發,然後從邊
    緣態的穿透光譜量測其群速度。我們觀察了由20個晶格點組成之晶格的兩邊緣
    態之間的傳播速度,並由此結果得出能夠傳播邊緣態的最大系統大小。
    另外,我們在晶格點上加上位能,使得有限的一維SSH鏈產生失序。我們發
    現,藉由操作週期的倒數b,系統的能帶結構會遭到扭曲。即便如此,系統仍
    保留一些局域態,這些態被強烈的限制在晶格的邊緣。由此可以得到,在晶格
    點上加上位能,有利於邊緣態的局域化。


    In this work we study the SSH model, the simplest model in which topological nontrivial
    phase transitions may occur. It describes polarized fermions moving in a
    one-dimensional lattice with staggered hopping amplitudes (v and w). We explore the
    limiting cases of the model for an infinite and a finite chain, and we obtain the energy
    spectrum for both cases, highlighting for the finite case, the importance of the parity of
    the number of sites L. As the topological features of the finite system emerge when
    the lattice has an even number of sites, we focus on this case for the rest of the work.
    Using the IPR, we make a thorough study of the topologically non-trivial zero-energy
    edge modes of a finite 1D SSH chain, obtaining that, contrary to the common belief,
    there exists a critical length, that we call Lc, much larger than the penetration depth
    i.e.,   << Lc, below which the transport of information with topological protection is
    possible. Because of the non-zero coupling energy between the edge modes of a finite
    size system, the edge states are not completely isolated at the two ends of the chain,
    then, an abrupt change in the wave localization is found through the IPR, supporting the
    existence of this characteristic transport length. In order to verify it experimentally, the
    implementation of the SSH model is carried out by combining split ring resonators and
    their complementary ones with controllable hopping amplitudes on a chain. By making
    measurements on the group velocity from the transmission spectroscopy of the edge
    modes with pulse excitations, we observe the transport velocity between the two edge
    states for a lattice composed by 20 sites. With this result, we are able to give a guideline
    on the maximum system size allowed to transport these edge states.
    Also, we give some disorder to the finite 1D SSH chain by adding an on-site potential.
    We find out that, by manipulating the inverse of the period b of the potential, the energy
    band structure of the system is distorted. However, the system preserves a couple of
    localized states. These states turn out to be strongly localized at the edges of the lattice,
    resulting in the fact that the addition of an on-site potential like the one we add in this
    work, benefits the localization of the edge modes.

    Abstract 10 1 Introduction 15 2 The Su-Schrieffer-Heeger Model 17 2.1 Limiting cases of the SSH model . . . . . . . . . . . . . . . . . . . . 18 2.2 Energy spectrum of a finite SSH chain and its zero-energy edge modes 19 2.3 Localization and the inverse participation ratio . . . . . . . . . . . . . 26 3 Experimental realization of the SSH model 31 3.1 SSH model simulated by SRRs and CSRRs . . . . . . . . . . . . . . 32 3.1.1 Transmission spectroscopy . . . . . . . . . . . . . . . . . . . 34 4 Disorder and localization in lattices 41 4.1 Exploring the AAH model . . . . . . . . . . . . . . . . . . . . . . . 42 4.2 The SSH model as a particular case of the AAH model . . . . . . . . 44 4.3 A finite SSH chain with on-site potential . . . . . . . . . . . . . . . . 45 5 Conclusions and perspectives 57 5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 5.2 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Bibliography 61

    [1] R. P. Feynman, International Journal of Theoretical Physics 21, 467 (1982).
    [2] C. Cohen-Tannoudji, B. Diu, and F. Laloe, Quantum Mechanics, Quantum
    Mechanics No. v. 1 (Wiley, 1991).
    [3] B. Schumacher, Phys. Rev. A 51, 2738 (1995).
    [4] G. J. Ferreira and D. Loss, Phys. Rev. Lett. 111, 106802 (2013).
    [5] T.W. Schmitt, M. R. Connolly, M. Schleenvoigt, C. Liu, O. Kennedy, J. M. Chávez-
    Garcia, A. R. Jalil, B. Bennemann, S. Trellenkamp, F. Lentz, E. Neumann, T. Lindström,
    S. E. de Graaf, E. Berenschot, N. Tas, G. Mussler, K. D. Petersson, D. Grützmacher,
    and P. Schüffelgen, Phys. Rev. A 22 (2022), 10.1021/acs.nanolett.1c04055.
    [6] X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).
    [7] J. M. Gambetta, J. M. Chow, and M. Steffen, npj Quantum Information 3 (2017),
    10.1038/s41534-016-0004-0.
    [8] W. P. Su, J. R. Schrieffer, and A. J. Heeger, Phys. Rev. B 22, 2099 (1980).
    [9] S. Aubry and G. André, Proceedings, VIII International Colloquium on Group-
    Theoretical Methods in Physics 3 (1980).
    [10] L. O. János K. Asbóth and A. Pályi, A Short Course on Topological Insulators
    (Springer International Publishing Switzerland, 2016).
    [11] N. K. Efremidis, Phys. Rev. A 104, 053531 (2021).
    [12] D. J. Griffiths, Introduction to Quantum Mechanics (2nd Edition) (Pearson Prentice
    Hall, 2004).
    [13] E. Schrödinger, Phys. Rev. 28, 1049 (1926).
    61
    [14] M. L. Sun, G. Wang, N. B. Li, and T. Nakayama, EPL (Europhysics Letters) 110,
    57003 (2015).
    [15] T. Li, R. X. Ye, C. Li, H. Liu, S. M. Wang, J. X. Cao, S. N. Zhu, and X. Zhang,
    Opt. Express 17, 11486 (2009).
    [16] I. Sersic, M. Frimmer, E. Verhagen, and A. F. Koenderink, Phys. Rev. Lett. 103,
    213902 (2009).
    [17] H. Guo, N. Liu, L. Fu, T. P. Meyrath, T. Zentgraf, H. Schweizer, and H. Giessen,
    Opt. Express 15, 12095 (2007).
    [18] S. S. Seetharaman, C. G. King, I. R. Hooper, and W. L. Barnes, Phys. Rev. B 96,
    085426 (2017).
    [19] Y.-H. Chang, N. D. Rivera-Torres, S. Figueroa-Manrique, R. A. R. Robles, V. C.
    Silalahi, C.-S. Wu, G. Wang, G. Marcucci, L. Pilozzi, C. Conti, R.-K. Lee, and
    W.Kuo, “Probing topological protected transport in finite-sized su-schrieffer-heeger
    chains,” (2020).
    [20] M. J. Rice and E. J. Mele, Phys. Rev. Lett. 49, 1455 (1982).
    [21] Y.-J. Lin, Y.-H. Chang, W.-C. Chien, and W. Kuo, Opt. Express 25, 30395 (2017).
    [22] H. Jiang, R. Lü, and S. Chen, The European Physical Journal B 93 (2020),
    10.1140/epjb/e2020-10036-3.
    [23] M. Zaimi, C. Boudreault, N. Baspin, N. Delnour, H. Eleuch, R. MacKenzie, and
    M. Hilke, Physics Letters A 388, 127035 (2021).
    [24] A. J. Leggett, S. Chakravarty, A. T. Dorsey, M. P. A. Fisher, A. Garg, and
    W. Zwerger, Rev. Mod. Phys. 59, 1 (1987).
    [25] J. Li, R.-L. Chu, J. K. Jain, and S.-Q. Shen, Phys. Rev. Lett. 102, 136806 (2009).
    [26] C.W. Groth, M.Wimmer, A. R. Akhmerov, J. Tworzydło, and C.W. J. Beenakker,
    Phys. Rev. Lett. 103, 196805 (2009).
    [27] A. Yamakage, K. Nomura, K.-I. Imura, and Y. Kuramoto, Journal of the Physical
    Society of Japan 80, 053703 (2011), https://doi.org/10.1143/JPSJ.80.053703 .
    [28] Y. Xing, L. Zhang, and J. Wang, Phys. Rev. B 84, 035110 (2011).
    62
    [29] H. Liu, B. Xie, H. Wang, W. Liu, Z. Li, H. Cheng, J. Tian, Z. Liu, and S. Chen,
    “Acoustic topological anderson insulators,” (2021).
    [30] P. W. Anderson, Phys. Rev. 109, 1492 (1958).
    [31] S. Ganeshan, K. Sun, and S. Das Sarma, Physical Review Letters 110 (2013),
    10.1103/PhysRevLett.110.180403.
    [32] K. Drese and M. Holthaus, Phys. Rev. Lett. 78, 2932 (1997).
    [33] G. Roati, C. D Errico, L. Fallani, M. Fattori, C. Fort, M. Zaccanti, G. Modugno,
    M. Modugno, and M. Inguscio, Nature 453 (2008), 10.1038/nature07071.
    [34] H. Hu, A. Strybulevych, J. H. Page, S. E. Skipetrov, and B. A. van Tiggelen,
    Nature Physics 4 (2008), 10.1038/nphys1101.
    [35] T. Schwartz, G. Bartal, S. Fishman, and M. Segev, Nature 446 (2007), 10.1038/nature05623.
    [36] J. Chabé, G. Lemarié, B. Grémaud, D. Delande, P. Szriftgiser, and J. C. Garreau,
    Phys. Rev. Lett. 101, 255702 (2008).
    [37] F. Izrailev, A. Krokhin, and N. Makarov, Physics Reports 512, 125 (2012),
    anomalous localization in low-dimensional systems with correlated disorder.
    [38] J. Biddle, D. J. Priour, B. Wang, and S. Das Sarma, Phys. Rev. B 83, 075105
    (2011).
    [39] Y. Zhang, D. Bulmash, A. V. Maharaj, C.-M. Jian, and S. A. Kivelson, “The
    almost mobility edge in the almost mathieu equation,” (2015).
    [40] Y. Wang, G. Xianlong, and S. Chen, The European Physical Journal B 90 (2017),
    10.1140/epjb/e2017-80232-3.
    [41] J. Sokoloff, Physics Reports 126, 189 (1985).
    [42] D. R. Hofstadter, Phys. Rev. B 14, 2239 (1976).
    [43] A. K. Geim and I. V. Grigorieva, Nature 499 (2013), 10.1038/nature12385.
    [44] M. Kohmoto, Phys. Rev. Lett. 51, 1198 (1983).
    [45] F. D. M. Haldane, Phys. Rev. Lett. 61, 2015 (1988).
    63
    [46] Y. Lahini, R. Pugatch, F. Pozzi, M. Sorel, R. Morandotti, N. Davidson, and
    Y. Silberberg, Phys. Rev. Lett. 103, 013901 (2009).
    [47] J. Biddle and S. Das Sarma, Phys. Rev. Lett. 104, 070601 (2010).
    [48] Y. E. Kraus, Y. Lahini, Z. Ringel, M. Verbin, and O. Zilberberg, Phys. Rev. Lett.
    109, 106402 (2012).
    [49] P. G. Harper, Proceedings of the Physical Society. Section A 68, 874 (1955).
    [50] R. B. Laughlin, Phys. Rev. B 23, 5632 (1981).
    [51] D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, Phys. Rev. Lett.
    49, 405 (1982).
    [52] J. E. Avron, R. Seiler, and L. G. Yaffe, Communications in Mathematical Physics
    110 (1987), 10.1007/BF01209015.
    [53] Y. Hatsugai, Phys. Rev. Lett. 71, 3697 (1993).
    [54] L. Dal Negro, C. J. Oton, Z. Gaburro, L. Pavesi, P. Johnson, A. Lagendijk,
    R. Righini, M. Colocci, and D. S. Wiersma, Phys. Rev. Lett. 90, 055501 (2003).
    [55] I. Bloch, J. Dalibard, and W. Zwerger, Rev. Mod. Phys. 80, 885 (2008).
    [56] J. H. Han, D. J. Thouless, H. Hiramoto, and M. Kohmoto, Phys. Rev. B 50, 11365
    (1994).
    [57] Y. E. Kraus and O. Zilberberg, Phys. Rev. Lett. 109, 116404 (2012).
    [58] X.-G. Wen, Quantum Field Theory of Many-Body Systems: From the Origin of
    Sound to an Origin of Light and Electrons (Oxford Scholarship Online, 2007).
    [59] E. Fradkin, Field Theories of Condensed Matter Physics, 2nd ed. (Cambridge
    University Press, 2013).
    [60] S. Ryu and Y. Hatsugai, Phys. Rev. Lett. 89, 077002 (2002).
    [61] K. Esaki, M. Sato, M. Kohmoto, and B. I. Halperin, Phys. Rev. B 80, 125405
    (2009).
    [62] P. Delplace and G. Montambaux, Phys. Rev. B 82, 035438 (2010).
    [63] S. Mittal, J. Fan, S. Faez, A. Migdall, J. M. Taylor, and M. Hafezi, Phys. Rev. Lett.
    113, 087403 (2014).
    64
    [64] A. Blanco-Redondo, I. Andonegui, M. J. Collins, G. Harari, Y. Lumer, M. C.
    Rechtsman, B. J. Eggleton, and M. Segev, Physical Review Letters 116, 1 (2016).
    [65] S. Weimann, M. Kremer, Y. Plotnik, Y. Lumer, S. Nolte, K. G. Makris, M. Segev,
    M. C. Rechtsman, and A. Szameit, Nature Materials 16, 433 (2017).
    [66] M. Mirhosseini, E. Kim, V. S. Ferreira, M. Kalaee, A. Sipahigil, A. J. Keller, and
    O. Painter, Nature Communications 9 (2018), 10.1038/s41467-018-06142-z.
    [67] G. Arregui, J. Gomis-Bresco, C. M. Sotomayor-Torres, and P. D. Garcia, Phys.
    Rev. Lett. 126, 027403 (2021).
    [68] M. Pan, H. Zhao, P. Miao, S. Longhi, and L. Feng, Nature Communications 9
    (2018), 10.1038/s41467-018-03822-8.
    [69] W. Song, W. Sun, C. Chen, Q. Song, S. Xiao, S. Zhu, and T. Li, Phys. Rev. Lett.
    123, 165701 (2019).
    65

    QR CODE