隨著科技的發展,電池已經成為人類社會中不可或缺的一部分,除了作為儲存能量的一種裝置之外,亦帶給我們許多生活上的便利,對於環境的保護也有相當的幫助。然而,隨著石油的逐漸消耗,利用電池作為交通工具的能量來源已逐漸成為當今研究的重要趨勢;這也意味著,未來在能源的需求上,勢必朝向能提供高電壓、高容量、高電能的儲能裝置作為考量。因此,利用串並聯的方式來連接電池,以獲取更龐大的電壓以及電容量,是一種能因應現今能量要求的方法。
本篇論文中,我們設計出一套模擬的方法,可利用單顆電池的放電資訊,來預測兩顆相同或不同容量之電池,經串聯或並聯後,以固定電流放電的情形。經過實驗的証明,我們確實能準確地估計出電池組在放電過程中電壓的變化;而透過進一步的討論與驗證,我們認為這個模擬系統能擴充到多顆不同容量的電池,並且能夠預測其經任意串並聯後的放電行為。
我們期望這套發展出來的模擬系統,能應用在電池組的監測系統,以維護使用時的安全性;除此之外,藉由準確的模擬結果,對於高能量電能設備中電池組的配置,可以利用各種不同容量、種類的電池增加設計上的彈性,並利用各電池的特性、以不同串並聯方式的連接,讓系統能夠安全地、有效地提供所需的電能,並節省製造過程所需的成本。
1.Ralph J. Broad, “Recent Developments in Batteries for Portable Consumer Electronics Applications”, Interface 8:3, Fall 1999, Electrochemical Society, Pennington, NJ.
2.D. Linden and B. R. Thomas, Handbook of Batteries, 3rd ed, p35.2, McGraw-Hill, New York (2002).
3.D. Fouchard, and J. B. Taylor, “The MOLICEL rechargeable lithium system: MOLICELL aspects”, Journal of Power Sources, 21, 195 (1987).
4.S. F. Schiffer, R. N. Devaux, and M. S. Plesher, in 18th Intersociety Energy Conversion Engineering Conference, PV 3, p.1494, Energy Storage & Conversion, Orlando, FL, USA (1983).
5.H. S. Ban, J. M. Lee, H. S. Mok, and G. H. Choe, in 2001 IEEE International Symposium on Industrial Electronics Proceedings, V 2, p.1026, Institute of Electrical and Electronics Engineers Inc., Pusan (2001).
6.H. Gan and E. S. Takeuchi, “Electrochemical battery for conversion of low rate energy into high rate energy by parallel discharging”, European Patent No.1126539 (2001).
7.R. Robert, “Discharge and charge modeling of lead acid batteries”, IEEE Applied Power Electronics Conference and Exposition, 2, 707 (1999).
8.W. Peukert, “Uber die Abhangigkeit der Kapazitat von der Entladestrom-starke bei Beiakkumulatorn”, Electrotech. Zeitung, 18, 287 (1897).
9.C. Y. Wang, Y. H. Pan, and V. Srinivasan, “An experimental and modeling study of isothermal charge/discharge behavior of commercial Ni-MH cells”, J. Power Source, 112, 298 (2002).
10.W. B. Gu, C. Y. Wang, S.M. Li, M. M. Geng, and B. Y. Liaw, “Modeling discharge and charge characteristics of nickel-metal hydride batteries”, Electrochimica. Acta., 44, 4525 (1999).
11.P. M. Gomadam, J. W. Weidner, R. A. Dougal and R. E. White, “Mathematical modeling of lithium-ion and nickel battery systems”, J. Power Source , 110, 267 (2002).
12.P. M. Gomadam, J. W. Weidner, and R. E. White, J. Electrochem. Soc., Extended Abstract, in Proceedings of the 199th ECS Fall Meeting, The Electrochemical Society Inc., Pennington, NJ (2001).
13.Z. H. Wang, W. B. Gu, and C. Y. Wang, in Proceedings of the 196th ECS Fall Meeting, p.96, The Electrochemical Society Inc., Pennington, NJ (1999).
14.A. B. Djordjevic, and D. M. Karanovic, “Cell Testing by calculated discharge curve method”, J. Power Source , 83, 134 (1999).
15.Gang Ning, Bala Haran, and Branko N. Popov, “Capacity fade study of lithium-ion batteries cycled at high discharge rates”, Journal of Power Sources, 117, 160 (2003).
16.W. J. Collins, Data Structures, p.273, John Wiley & Sons, New York (1992).
17.D. Boylestad, Introductory circuit analysis, 9th ed, p161.2, Prentice Hall, New York (2002).
18.Nievergelt, Yves. UMAP: Module 718; Splines in single and Multivariable Calculus. 1993. Lexington, MA: COMAP
19.R. L. Burden, “Numerical Analysis, Sixth Edition”, Brooks/Cole Publishing Company, 1997.
20.http://www.petc.com.tw
21.E. P. Bernardi, and J. Newman, “A General Energy Balance for Battery Systems”, J. Electrochem. Soc., 132, 5 (1985).