研究生: |
洪士庭 Shih-Ting Hung |
---|---|
論文名稱: |
研製次波長結構之負折射率光子晶體透鏡及太陽能電池抗反射層 The study of negative refraction photonic crystals lens and the antireflection layers of solar cell in subwavelength structure |
指導教授: |
朱鐵吉
Tieh-Chi Chu |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 中文 |
論文頁數: | 124 |
中文關鍵詞: | 負折射率 、光子晶體 、抗反射層 |
外文關鍵詞: | negative refraction, photonic crystal, antireflection layer |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於近年來奈米製程技術的發展,拓寬了光子晶體與光電元件製作的能帶應用波段,從微波減小到紅外光及可見光,使應用的層面更加廣泛與實際。更重要的是,奈米技術的發展可以大幅縮小元件的體積,並從事更精密的積體電路製程。
本篇論文的主旨在於製作次波長結構之光電元件,主要分為下列三個研究方向 (1)利用HDPCVD(High Density Plasma Chemical Vapor Deposition)來改良傳統自行衍生技術製作之二維自行衍生光子晶體波導,以期研發出一製作簡易、可複製性與彈性更高的光子晶體製程。(2)利用化學氣相沉積法製作太陽能電池之抗反射層結構。(3)以模擬的方式研究負折射率現象及製作負折射率透鏡。
實驗結果成功的利用HDPCVD的自行衍生方法製作出二維光子晶體波導與太陽能電池之抗反射層,並有別於一般利用高折射率材料來研究負折射率現象,本論文中利用低折射率與低消光係數材料SU8成功的模擬出負折射率現象且將其結果運用到透鏡的製作上,在實驗當中得到了許多特殊的光學分析結果,亦發現了這些不同型態光電元件的特性與應用價值。
Owing to the vigorous development of nano-technology, the bandgap region of photonic crystals or electro-optical devices can be shifted from microwave to infrared or visible light and applications of photonic crystals(PBG) are more extensively and practically. Nano-technology can apply to fabricate many kinds of novel electro-optical devices. Most importantly, it can reduce the volume of these devices substantially and thus will be engaged in highly concentrated integration of electro-optical devices.
In this thesis, we study three kinds of subwavelength structure electro-optical devices. First, we use HDPCVD(High Density Plasma Chemical Vapor Deposition) to improve conventional autocloning method and expect to fabricate 2-D PCs waveguide by simpler, reproducible and flexible process. Second, we use autocloning method to fabricate the antireflection layer of solar cell. We also discuss negative refraction lens in this study.
We successfully fabricate 2-D PCs waveguide and the antireflection layer of solar cell by using autocloning method. We also use 2D FDTD(Finite-difference time-domain) to simulate negative refraction phenomenon of low-index material, and apply to the fabrication of negative refraction lens. Many characteristics of electro-optical devices are obtained and the valuable applications are also analyzed.
參考文獻
[1] E. Yablonovitch, “Inhibited spontaneous emission in solid-sate physics and electronics,” Phys. Rev. Letters., 58, 2059–2062, (1987).
[2] S. John, “Strong localization of photons in certain disordered dielectric superlattice,” Phys.Rev.Letters, 58, 2486 –2489, (1987).
[3] Kurt Busch and Sajeev John, “Liquid Crystal Photonic Band Gap Materials: The Tunable Electromagnetic Vacuum,” Physical Review Letters, 83 (5), 967-970, (1999).
[4] Shung, Kenneth W. K.; Mahan, G. D. ” Calculated photoemission spectra of sodium,” Physical Review Letters, 57(8), 1076-9, (1986).
[5] C. J. M. Smith, H. Benisty, D. Labilloy, U. Oesterle, R. Houdre, T. F. Krauss, R. M. De La Rue, and C. Weisbuch, “Near-infrared microcavities confined by two-dimensional photonic bandgap crystal,” Electron.Letters., 35, 228–230,(1999).
[6] S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature, 407, 608–610, (2000).
[7] T. Baba, N. Fukaya, and A. Motegi, “Light propagation characteristicsin photonic crystal waveguides,” Tech.Dig. CLEO/Pacific Rim 2001, vol. I, paper TuA4-5, 290–291, (2001).
[8] J. G. Fleming and S. Y. Lin, “Three-dimensional photonic crystal with a stop band from 1.35 to 1.95 μm,” Opt. Lett., 24, 49–51, (1999).
[9] D. J. Ripin, Kuo-Yi Lim, G. S. Pertrich, Pierre R. Villeneuve, Shanhui Fan, E. R. Thoen, J. D. Joannopoulos, E. P. Ippen, and L. A. Kolodziejski, “Photonic band gap airbridge microcavity resonances in GaAs/AlxOy waveguides.,” Journal of applied physics., 87, 3, (2000)
[10] Chow, Edmond; Lin, S.Y.; Johnson, S.G.; Villeneuve, P.R.; Joannopoulos, J.D.; Wendt, J.R.; Vawter, G.A.; Zubrzycki, W.; Hou, H.; Alleman, “A.. Three-dimensional control of light in a two-dimensional photonic crystal slab.” Nature, 407 , 983, (2000).
[11] Cregan, R. F.; Mangan, B. J.; Knight, J. C.; Birks, T. A.; Russell, P. St. J.; Roberts, P. J.; Allan, D. C. “Single-mode photonic band gap guidance of light in air.” Science (Washington, D. C. 285(5433), 1537-1539, (1999).
[12] Shawn-Yu Lin, V. M. Hietala, Li Wang, and E. D. Jones, “Highly dispersive photonic band-gap prism,” 21, 21, (1996).
[13] H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B, 58(16), 10096–10099, (1998).
[14] T. F. Krauss, “Photonic crystal integrated optics,” Tech. Dig. CLEO/Pacific Rim 2001, vol. I, paper TuA4-1, 282–283, (2001).
[15] S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, S. R. Kurtz and Jim Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature , 394, 16, (2002).
[16] J. G. Fleming, S. Y. Lin, I. EI-Kady and K. M. Ho, “All-metallic three-dimensional photonic crystal with a large infrared bandgap ,” Nature , 417, 2, (2002).
[17] Steven G. Johnsona and J. D. Joannopoulos, “Three-dimensionally periodic dielectric layered structure with omnidirectional photonic band gap,” Appl. Phys. Lett., 77(22), 3490, (2000).
[18] K. Aoki, “Three-dimensional photonic crystal stacking by micro- manipulation,” Appl. Phys. Lett., 81(17), 3122, (2002).
[19] Yurii A. Vlasov, Xiang-Zheng Bo, James C. Sturm & David J. Norris,“On-chip natural assembly of silicon photonic bandgap crystals ,” Nature , 414, 15, (2001).
[20] Gruning, U.; Lehmann, V..Macroporous. “Silicon with a complete two-dimensional photonic band gap centered at 5 μm.” Applied Physics Letters, 68(6), 747, (1996).
[21] Scott Kennedy, Michael Brett, Ovidiu Toader, and Sajeev John, “Fabrication of Tetragonal Square Spiral Photonic Crystals,” Nano Letters, 2(1), 59, (2002).
[22] Ovidiu Toader and Sajeev John, “Proposed square spiral micro- fabrication architecture for large three-dimensional photonic band gap crystals,” Science, 292, 1133, (2001).
[23] A. Urbas, Y. Fink, and E. L. Thomas, “One-dimensionally periodic
dielectric reflectors from self-assembled block copolymer–homopolymer blends,” Macromolecules, 32, 4748–4750, (1999).
[24] S. Kawakami, “Fabrication of submicrometer 3D periodic structures composed of Si/SiO2,” Electron. Lett., 33(14), 1260–1261,(1997).
[25] T. Kawashima, T. Sato, K. Miura, Y. Ohtera, N. Ishino, and S. awakami, “Autocloning technology: Fabrication method for photonic crystals based on sputtering process,” Proc. Int. School Quantum electronics, 115–122, (2000).
[26] T. Sato, K. Miura, N. Ishino, Y. Ohtera, T. Tamamura, and S. Kawakami “autocloning technique and their application,” Opt. Quantum Electron, 34(1), 63–70, (2001).
[27] T. Kawashima, K. Miura, T. Sato, and S. Kawakami, “Self-healing effects in the fabrication process of photonic crystals,” Appl. Phys. Lett., 77(16), 2613–2615, (2000).
[28] Takashi Sato, Yasuo Ohtera, Naoto Ishino, Kenta Miura, and S. Kawakami, “In-Plane Light Propagation in Ta2O5/SiO2 Autocloned Photonic crystals,” J. of Quantum. Electronics, 38, 7, (2002).
[29] A. Berrier, M. Mulot, M. Swillo, M. Qiu, L. Thylen, A. Talneau, and S. Anand, “Negative refraction at infrared wavelengths in a Two-Dimensional photonic crystal,” Physical review letters, 93, 7, (2004).
[30] T. Baba, N. Fukaya, and A. Motegi, “Light propagation characteristics in photonic crystal waveguides,” Tech. Dig. CLEO/Pacific Rim 2001, vol. I, paper TuA4-5, 290–291, (2001).
[31] S. Kawakami and Y. Ohtera, “Band engineering of photonic crystals: Realization of novel waveguides,” Proc. 3rd Workshop Photonic Electromagnetic Crystal Structures, St. Andrews, Scotland , (2001).
[32] K. Miur , Y. Ohtera, H. Ohkubo, N. Akutsu and S. Kawakami, “Reduction of propagation and bending losses of heterostructured photonic crystal waveguides by use of a high-Δ structure,” Optics letters , 28, 9, (2003).
[33] M. Shirane, A. Gomyo, K. Miura and S. Kawakami, “Optical directional couplers based on autoconed photonic crystals, ” Electronic Lett, 39, 1, (2003).
[34] Y. Ohtera, T. Sato, T. Kawashima, T. Tamamura, and S. Kawakami, “Photonic crystal polarization splitters,” Electron. Lett., 35(15), 1271–1272 , (1999).
[35] M. Notomi, T. Tamamura, T. Kawashima, and S. Kawakami, “Drilled alternating-layer three-dimensional photonic crystals having a full band gap,” Appl. Phys. Lett., 77, 4256–4258, (2000).
[36] Osamu Hanaizumi, Yasuo Ohtera, Takashi Sato, and S. Kawakami, “Propagation of light beams along line defects formed in a-Si/SiO2 three-dimensional photonic crystals: Fabrication and observation,” Appl. Phys. Lett., 74, 6, (1999).
[37] Hiroyuki Ohkubo, Y. Ohtera, S. Kawakami, T. Chiba and H. Okano, “Integration and evaluation of multichannel photonic crystal wavelength filters consisting of autocloned Ta2O5/SiO2 multilayer thin films,” Jpn. J. Appl. Phys., 42, 1219-1221, (2003).
[38] T. Kawashima, T. Sato, K. Miura, Y. Ohtera, N. Ishino, and S. awakami “A new fabrication technique for photonic crystals :Nanolithography combined with alternating-layer deposition” Optical and Quantum Electronics, 53-61, (2002).
[39] H. Kosaka, T. Kawashima, A. Tomita, M. Notomi and Toshiaki, “Photonic crystals for micro lightwave circuits using wavelength- dependent angular beam steering,” Appl. Phys. Lett., 74, 10, (1999).
[40] H. Kosaka, T. Kawashima, A. Tomita, M. Notomi and Toshiaki, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett., 74, 9, (1999).
[41] H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, Takashi Sato, and S. Kawakami, “Superprism phenomena in photonic crystals: toward microscale lightwave circuits,” J. Lightwave Tech., 17, 11 , (1999).
[42] H. Kosaka, T. Kawashima, A. Tomita, Takashi Sato and S. Kawakami, “Photonic-crystal spot-size converter,” Appl. Phys. Lett., 76, 3, (2000).
[43] S. Kawakami, T. Sato, K. Miura, Y. Ohtera, T. Kawashima, and H. Ohkubo, “3-D photonic-crystal heterostructures: fabrication and in-Line resonator,” Photonics Tech. Lett., 15, 6, (2003).
[44] T. Sato, N. Ishino, K. Miura, S. Kawakami, and M. Miyagi, “Application of in-plane type autocloned photonic crystals,” Institute of Electronics, Information and Communication Engineers, Tech. Rep. OPE2001-46, (2001).
[45] Shanhui Fan, Rerre FL Villeneuve, Robert D. Meade, and J. D. Joannopoulos, “Design of three-dimensional photonic crystals at submicron lengthscales,” Appl. Phys. Lett. , vol.65 (II), 12, (1994).
[46] M. Notomi, T. Tamamura, T. Kawashima, and S. Kawakami, “Transmission characterization of drilled alternating-layer 3-D photonic crystals,” Appl. Phys. Lett. , 93, 11, (2003).
[47] K. Wang, P. Filloux and N. Paraire, “Two-dimensional photonic crystals by focused-ion-beam etching of multilayer membranes,” J. Vac. Sci. Technol. B, 21, 3, (2003).
[48] Lin Zhang and Changxi Yang, “Polarization splitter based on photonic crystal fibers,” Optics Express, 11, 9, (2003).
[49] N. Paraire, P. Filloux and K. Wang, “Patterning andcharacterization of 2D photonic crystals fabricated by focused ion beam etching of multilayer membranes,” Nanotechnology, 15, 341–346, (2004).
[50] K. H. Dridi, “Intrinsic eigenstate spectrum of planar multilayer stacks of two-dimensional photonic crystals,” Optics Eepress, 11(10), 1156, (2003).
[51] S.Kawakami, T. Kawashima, and T. Sato, “Mechanism of shape-formation of 3D periodic nanostructures by bias sputtering,” Appl. Phys. Lett., 74, 463–465,(1999).
[52] T. Kawashima, Takashi Sato, Yasuo Ohtera, and S. Kawakami, “Tailoring of the Unit Cell Structure of Autocloned Photonic Crystals,” J. of Quantum. Electronics, 38, 7, (2002).
[53] Hong Xiao著, 張鼎張、羅正忠譯, 半導體製程技術導論, 台灣培生出版股份有限公司,台北市, (2002)。
[54] 莊達人, VLSI製造技術, 高立圖書有限公司出版,台北市, (2000)。
[55] Osamu Hanaizumi, Kazutaka Ono, Yuichi Ogama, Takehiro Koga, Yuzo Hasegawa,Atsushi Ogihara and Go Saito, “Fabrication and assessment of sputtered Si:SiO2 films emitting white light without annealing, ” Jpn. J. Appl. Phys. 41, 1084, (2002).
[56] Osamu Hanaizumi, Kazutaka Ono, and Yuichi Ogawa, “Blue-light emission from sputtered Si:SiO2 films without annealing, ” Appl. Phys. Lett., 82, 4, (2003).
[57] Osamu Hanaizumi, Makoto. Saito and Yasuo. Ohtera, “Introducing CdS into two- and three-dimensional photonic crystals, ” Optical and Quantum Electronics, 34, 71-77, (2002).
[58]李幸芬,利用半導體製程技術研製三維光子晶體,國立清華大學 碩士論文, 新竹市, (2004)。
[59] V.G.Veselago, “Electrodynamics of materials with simultaneously negative values of ε[dielectric constant] and μ[magnetic permeability.” Uspekhi Fizicheskikh Nauk,92(3), 517-26, (1967).
[60] J.B.Pendry, “Negative Refraction Makes a Perfect Lens.”, Physical Review Letters, 85(18), 3966-3969, (2000).
[61] Shelby, R. A.; Smith, D. R.; Schultz, S. “Experimental verification of a negative index of refraction.”, Science (Washington, DC, United States), 292(5514), 77-78, (2001).
[62] J. B Pendry, ”Negative refraction.”, Contemporary Physics, 45(3), 191-202, (2004).
[63] C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, M. Tanielian, “Experimental Verification and Simulation of Negative Index of Refraction Using Snell's Law.”, Physical Review Letters, 90(10), 107401/1-107401/4, (2003)
[64] P. V. Parimi, W. T. Lu, P. Vodo, J. Sokoloff, S Sridhar, “Negative refraction and left-handed electromagnetism in microwave photonic crystals.” Los Alamos National Laboratory, Preprint Archive, Condensed Matter 1-11, (2003).
[65] E.Cubukcu, K. Aydin, E. Ozbay, S. Foteinopolou, C. M. Soukoulis, “Subwavelength Resolution in a Two-Dimensional Photonic-Crystal-Based Superlens.”, Physical Review Letters, 91(20), 207401/1-207401/4, (2003)
[66] 葉真, “關於左手物質和負折射現象”, 物理雙月刊, 廿六卷二期, 444-449, (2004)。