簡易檢索 / 詳目顯示

研究生: 洪達任
Hung, Ta-Jen
論文名稱: 以結構為基礎探討人類嗜酸性球核醣核酸水解酶與肝素之結合模式
Structural basis for differential heparin binding modes of human eosinophil ribonucleases
指導教授: 張大慈
Chang, Dah-Tsyr
口試委員: 洪上程
Hung, Shang-Cheng
孫玉珠
Sun, Yuh-Ju
蘇士哲
Sue, Shih-Che
黃群偉
Huang, Chiun-Wei
張顥騰
Chang, Hao-Teng
學位類別: 博士
Doctor
系所名稱: 生命科學暨醫學院 - 分子與細胞生物研究所
Institute of Molecular and Cellular Biology
論文出版年: 2013
畢業學年度: 102
語文別: 英文
論文頁數: 184
中文關鍵詞: 人類嗜酸性白血球核醣核酸酶嗜酸性白血球陽離子蛋白嗜酸性白血球神經毒蛋白肝素糖胺聚糖石英振盪微天平磁減量試驗
外文關鍵詞: eosinophil ribonuclease, eosinophil cationic protein, eosinophil derived neurotoxin, heparin, glycosaminoglycans, quartz crystal microbalance, magnetic reduction assay
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 人類嗜酸性白血球陽離子蛋白(eosinophil cationic protein,ECP)及嗜酸性白血球神經毒蛋白(eosinophil derived neurotoxin,EDN)皆由活化的嗜酸性白血球分泌至血液中,並隸屬於人類核醣核酸水解酶A家族(RNase A superfamily)。ECP與EDN具有極高的序列及結構相似性,然而兩者之生物功能卻不盡相同。本研究以分子對接(molecular docking)模擬ECP/EDN與肝素聚己糖之交互作用,發現ECP序列中之Gln40及His64形成鉗狀結構以穩定與其結合的肝素聚己糖,而EDN則無相似的結構。此外Arg105亦被預測對ECP與肝素聚己糖交互作用具有相當貢獻。為了釐清預測的真實性,Gln40、His64以及Arg105等胺基酸透過點突變置換成丙氨酸(Ala),並運用恆溫滴定熱量計(isothermal titration calorimetry,ITC)測量ECP突變株與肝素間結合力的變化。此外,本研究利用石英振盪微天平(quartz crystal microbalance,QCM)以及磁減量試驗(magnetic reduction assay,MRA)兩種新穎分子親和力偵測技術測量由ECP序列衍生之細胞穿透胜肽(NYRWRCKNQN,CPPecp)以及肝素結合胜肽(YRWRCK,HBPecp)的肝素/糖胺聚糖結合能力。本研究分析ECP與EDN與肝素結合模式的差異,進而探討ECP與EDN之序列、結構、以及功能的相關性。本論文之主要貢獻為發現ECP/EDN與肝素/糖胺聚糖結合模式與結合強度的差異性,及ECP/EDN與細胞間作用相異性的原因,進而瞭解相關免疫疾病的分子機制。


    Human eosinophil cationic protein (ECP) and eosinophil derived neurotoxin (EDN) are two ribonuclease A family members secreted by activated eosinophils. They share conserved catalytic triad and similar three dimensional structures. ECP and EDN are heparin binding proteins with diverse biological functions. Here, a novel molecular model for ECP/EDN binding of heparin hexasaccharide, [GlcNS(6S)-IdoA(2S)]3, was predicted. Interestingly, Gln40 and His64 on ECP formed a clamp-like structure to stabilize heparin hexasaccharide in our model, which was not observed in the corresponding residues on EDN. To validate our prediction, mutant ECPs including ECP Q40A, H64A, R105A, and double mutant ECP Q40A/H64A were generated, and their binding affinity for heparins were measured by isothermal titration calorimetry (ITC). Weaker binding of ECP Q40A/H64A of all heparin variants suggested that Gln40-His64 clamp contributed to ECP-heparin interaction significantly. Besides, binding affinities of a multi-functional peptide (NYRWRCKNQN, CPPecp), containing major heparin binding region of ECP, to heparin derivatives and glycosaminoglycans (GAGs) were determined by quartz crystal microbalance (QCM) and magnetic reduction assay (MRA). Moreover, a peptide containing minimum length to interact with heparin (YRWRCK, HBPecp) was also used. In conclusion, our in silico and in vitro data demonstrate that ECP uses not only major heparin binding region but also other surrounding residues to interact with heparin. Discovery of such correlation in sequence, structure, and function is a unique feature of only higher primate ECP, but not EDN, as well as differential binding mode, binding affinity, and cellular interaction between ECP and EDN facilitate further understanding of molecular mechanisms of immune diseases.

    中文摘要 1 Abstract 2 Acknowledgement 3 Table of Contents 4 Abbreviation 12 Chapter 1 Introduction 17 1-1 Eosinophil 17 1-2 Human RNaseA superfamily 17 1-3 Eosinophil RNases 18 1-4 Structure features of eosinophil RNases 18 1-5 Eosinophil cationic protein 19 1-6 Eosinophil derived neurotoxin 20 1-7 Heparin and glycosaminoglycans 21 1-8 Interaction between heparin and eosinophil RNases 21 1-9 Heparin binding motif 22 1-10 Heparin binding regions of eosinophil RNases 22 1-11 Amino acids involved in ECP-heparin interaction 23 1-12 Multi-functional peptide derived from eosinophil RNases 24 1-13 Biosensors for molecular interaction detection 24 1-14 Isothermal titration calorimetry (ITC) 25 1-15 Quartz crystal microbalance (QCM) 25 1-16 Magnetic reduction assay (MRA) 26 1-17 Surface plasmon resonance (SPR) 27 1-18 Lanthanide labeling for fluorescence measurement 27 1-19 Native chemical ligation (NCL) 28 1-20 Aims 29 Chapter 2 Materials and Methods 30 2-1 GAGs and heparin derivatives 30 2-2 Antibodies and chemicals 30 2-3 Fluorescence-assisted carbohydrate electrophoresis (FACE) 31 2-4 In silico docking simulation of heparin hexasaccharide and dodecasaccharide to ECP and EDN 31 2-5 Construction, expression and purification of wild type and mutant ECPs 32 2-6 Enzymatic activity assay of wild type and mutant ECPs 33 2-7 ITC experiments 33 2-8 Immuno-fluorescence staining and confocal microscopy 34 2-9 Peptide syntheses 34 2-10 Eu-fluorescence analysis 35 2-11 TNBS method 35 2-12 Determination of Eu Content 36 2-13 DTPAah modification of QCM microchip and Eu chelation 36 2-14 Amino group quantification by DTPA-aminoacetaldehyde modification using Eu complexation 36 2-15 Maleimide modification of the QCM N-link sensor chip 37 2-16 Eu labeled BSA (Eu-BSA, TJ-1) 37 2-17 CPPecp peptide immobilized QCM N-link sensor chip 37 2-18 QCM experiments 38 2-19 Preparation of aminoxy functionalized silica gel (TJ-2) 38 2-20 Deprotection of Boc on TJ-2 (TJ-3) 38 2-21 Preparation of 6-O-dansylated 1,2-3,4-di-O-isopropylidene galactopyranose (TJ-4) 39 2-22 De-protection of 6-O-dansylated 1,2-3,4-di-O-isopropylidene galactopyranose (6-O-Dan-Gal; TJ-5) 39 2-23 NMR experiments 39 2-24 Dextran-coated 60 nm nanoparticle synthesis (NP-OH, TJ-NP1) 40 2-25 Amino-terminated nanoparticle synthesis (NP-NH2, TJ-NP2) 40 2-26 Carboxylic acid-terminated nanoparticle synthesis (NP-COOH, TJ-NP3) 40 2-27 Glycine thioester synthesis (TJ-7 and TJ-10) 40 2-28 Deprotection of Boc (TJ-8 and TJ-11) 44 2-29 EDC/NHS cross-linking of Boc-glycine or NP-COOH with glycine thioester 46 2-30 Nanoparticle iron content analysis 48 2-31 Inductively coupled plasma-atomic emission spectrometer (ICP-AES) experiments 49 2-32 Removal of the alloc protecting group on HBPecp peptidyl resin 49 2-33 Fmoc labeling of HBPecp peptidyl resin 49 2-34 TFA cleavage of HBPecp peptidyl resin 49 2-35 High-performance liquid chromatography (HPLC) purification 50 2-36 MRA experiments 50 2-37 Statistical analysis 52 Chapter 3 Structural basis of eosinophil RNases in heparin binding 53 3-1 Sequence alignment of eosinophil RNases 53 3-2 Expression and purification of wild-type ECP 53 3-3 Influence of heparin chain length in ECP binding 54 3-4 Accuracy of in silico docking simulation 55 3-5 Binding model of ECP to heparin hexasaccharide 56 3-6 Binding model of EDN to heparin hexasaccharide 57 3-7 Comparison of ECP/EDN in complex with heparin hexasaccharide 58 3-8 Expression and purification of mutant ECPs 58 3-9 Determination of binding affinities between wtECP/mutant ECPs and heparin derivatives by ITC 59 3-10 Secondary heparin-binding site on ECP 61 3-11 Binding of ECP to heparin dodecasaccharide 62 3-12 Endocytosis of ECP and inhibitor screening from Chinese herbs 62 Chapter 4 Determination of binding affinities between heparin derivatives/GAGs and heparin binding peptide derived from ECP using QCM 64 4-1 Superimposition of ECP/EDN-heparin hexasaccharide complex by fitting residues 32–41 64 4-2 Determination of functional amino groups on PEI by TNBS method 65 4-3 Determination of functional amino group on QCM N-link sensor chip by pyridoxal phosphate 66 4-4 Determination of functional amino group on QCM N-link sensor chip by DTPA and Eu method 66 4-5 Immobilization of maleimide functional groups on QCM N-link sensor chip 68 4-6 Determination of protein binding density on QCM N-link sensor chip using Eu-BSA 68 4-7 Immobilization of CPPecp on QCM N-link sensor chip 69 4-8 Determination of binding affinity between CPPecp and heparin by QCM 69 4-9 Determination of binding affinities between CPPecp and heparin derivatives by QCM 70 4-10 Determination of binding affinities between CPPecp and GAGs by QCM 70 4-11 Aminoxy functionalized silica gel (TJ-3) 71 4-12 Dansylation of galactose (6-O-Dan-Gal; TJ-5) 72 4-13 Conjugation of 6-O-Dan-Gal on aminoxy functionalized silica gel (TJ-6) 72 Chapter 5 Determination of binding affinities between heparin derivatives/GAGs and heparin binding peptide derived from ECP using MRA 74 5-1 Nanoparticle synthesis 74 5-2 Glycine ethyl thioglycolate thioester linker 74 5-3 Glycine ethyl thioglycolate thioester-terminated nanoparticle synthesis 75 5-4 Glycine methyl-3-mercaptopropionate thioester linker 76 5-5 Glycine methyl-3-mercaptopropionate thioester-terminated nanoparticle synthesis 76 5-6 Fmoc-labeled HBPecp synthesis 77 5-7 Determination of binding affinities between CPPecp and GAGs by MRA 78 Chapter 6 Discussion 79 Figures 86 Figure 1-1 Multifunctional effects of eosinophils 86 Figure 1-2 Amino acid sequence alignment of eight human RNases 87 Figure 1-3 Three-dimensional structures of human RNaseA superfamily members 88 Figure 1-4 Crucial regions and key residues on ECP involved in biological properties 89 Figure 1-5 Location and structure of HSPG 90 Figure 1-6 Structures of GAGs 91 Figure 1-7 Principle of ITC 92 Figure 1-8 Principle of QCM action 93 Figure 1-9 Principle of MRA 94 Figure 1-10 Principle of SPR 95 Figure 1-11 DTPAah modification of amino group 96 Figure 3-1 Sequence alignment of human eosinophil RNases and HBRs 97 Figure 3-2 Expression and purification of ECP-6His 98 Figure 3-3 Requirement of heparin length for interaction with wtECP 99 Figure 3-4 Estimation of in silico docking accuracy and performance 100 Figure 3-5 Predicted ECP-heparin hexasaccharide interaction 102 Figure 3-6 Predicted EDN-heparin hexasaccharide interaction 104 Figure 3-7 Putative heparin binding clamp in ECP with corresponding residues in EDN 106 Figure 3-8 Purification of wtECP and mutant ECPs 107 Figure 3-9 Binding isotherm for interaction of wild type/mutant ECP with heparin hexasaccharide 109 Figure 3-10 Predicted secondary heparin binding sites on wtECP surface 112 Figure 3-11 Predicted wtECP-heparin dodecasaccharide interaction 114 Figure 3-12 Inhibition of MBP-ECP translocation by Chinese herbs 116 Figure 4-1 Comparison of the binding residues (32-41) of human ECP and EDN 117 Figure 4-2 Amount of pyridoxal phosphate binding on QCM N-link sensor chip 118 Figure 4-3 Amounts of Eu ions bound on modified QCM N-link sensor chips 119 Figure 4-4 Amounts of Eu-BSA binding to QCM N-link sensor chips 120 Figure 4-5 Binding affinities of CPPecp to heparin molecules with different lengths using QCM 121 Figure 4-6 Binding affinities of CPPecp to heparin derivatives using QCM 122 Figure 4-7 Binding affinities of CPPecp to GAGs using QCM 123 Figure 4-8 Binding isotherm for CPPecp interaction with GAGs 125 Figure 4-9 Conjugation of 6-O-Dan-Gal on aminoxy functionalized silica gel 126 Figure 5-1 Glycine ethyl thioglycolate thioester synthesis 127 Figure 5-2 Boc-glycine-glycine thioester (TJ-9) synthesis 128 Figure 5-3 Thioester group determination using IR spectroscopy 128 Figure 5-4 Sulfur determination using X-ray photoelectron spectroscopy (XPS) 129 Figure 5-5 Glycine methyl-3-mercaptopropionate thioester synthesis 130 Figure 5-6 Analysis of Fmoc-labeled HBPecp 131 Figure 5-7 Purification of Fmoc-HBPecp 132 Figure 5-8 Binding affinities of HBPecp/CPPecp to LMWH determined by MRA 133 Figure 5-9 Binding affinities of CPPecp to HMWH/CSC determined by MRA 134 Figure 6-1 Sequence alignment of primate human eosinophil RNases and HBRs 135 Figure 6-2 Docking model of ECP against a heparin dodecasaccharide 136 Tables 137 Table 1-1 Comparison of catalytic and biological properties between eosinophil RNases 137 Table 1-2 Reported regions and residues in ECP involved in biological functions 138 Table 2-1 Gradient conditions of HPLC for Fmoc-HBPecp 139 Table 3-1 RNase activity of wtECP and mutant ECPs 140 Table 3-2 Interaction between wild type ECP and heparin hexasaccharide 141 Table 3-3 Calculated binding energy of heparin hexasaccharide to various ECP mutants and contribution of individual amino acid 143 Table 3-4 Interaction between wild type EDN and heparin hexasaccharide 144 Table 3-5 Calculated binding energy of heparin hexasaccharide to various EDN mutants and contribution of individual amino acid 145 Table 3-6 Thermodynamic parameters for interaction between wild type/mutant ECP and heparin derivatives 146 Table 4-1 Amount of functional amino groups on modified QCM N-link sensor chips 147 Table 4-2 Binding affinity of each GAG to CPPecp determined by QCM 147 Table 5-1 Sulfur concentration in different NPs. 148 Table 5-2 Sulfur concentration in each experiment. 148 Table 6-1 List of heparin-protein complexes 149 Table 6-2 Comparison of binding affinities among different methods 150 Table 6-3 Pros and Cons of ITC, QCM and MRA 151 Schemes 152 Scheme 1-1 Mechanism of NCL 152 Scheme 4-1 DTPA and Eu method using DTPAah 153 Scheme 4-2 DTPA and Eu method using DTPA aminoacetaldehyde 153 Scheme 4-3 EMCS immobilization on QCM N-link sensor chip 154 Scheme 4-4 Preparation of Eu-BSA (TJ-1) 154 Scheme 4-5 Immobilization of CPPecp on QCM N-link sensor chip 155 Scheme 4-6 Aminoxy acetic acid conjugated amino functionalized silica gel (TJ-2 & TJ-3) 155 Scheme 4-7 Preparation of 6-O-Dansyl-Galactose (TJ-4 & TJ-5) 155 Scheme 4-8 Conjugation of 6-O-Dan-Gal on aminoxy functionalized silica gel (TJ-6) 155 Scheme 5-1 Iron oxide nanoparticle syntheses (60 nm) 156 Scheme 5-2 Glycine ethyl thioglycolate thioester linker synthesis (TJ-7 and TJ-8) 156 Scheme 5-3 EDC/NHS cross-linking of Boc-glycine and thioester linker (TJ-9) 156 Scheme 5-4 Thioester-terminated nanoparticle synthesis 156 Scheme 5-5 Glycine methyl-3-mercaptopropionate thioester linker synthesis (TJ-10 and TJ-11) 157 Scheme 5-6 Thioester terminated-nanoparticle synthesis with a glycine methyl-3- mercaptopropionate thioester linker 157 Scheme 5-7 Fmoc-labeled heparin-binding peptide synthesis 157 Scheme 5-8 Heparin binding NP synthesis using EDC/NHS cross-linking method 157 Scheme 6-1 Click reaction 158 References 159 Appendix I List of eosinophil RNases heparin binding regions and peptide 168 Appendix II List of products 169 Appendix III Structure of heparin-protein complexes 173

    1. Spry, C. J. (1989) Springer seminars in immunopathology 11, 471-477
    2. Broide, D. H., Gleich, G. J., Cuomo, A. J., Coburn, D. A., Federman, E. C., Schwartz, L. B., and Wasserman, S. I. (1991) The Journal of allergy and clinical immunology 88, 637-648
    3. Bystrom, J., Amin, K., and Bishop-Bailey, D. (2011) Respiratory research 12, 10
    4. Gleich, G. J., and Adolphson, C. R. (1986) Advances in immunology 39, 177-253
    5. Silberstein, D. S. (1995) Crit Rev Oncol Hematol 19, 47-77
    6. Rothenberg, M. E., and Hogan, S. P. (2006) Annual review of immunology 24, 147-174
    7. Dyer, K. D., and Rosenberg, H. F. (2006) Mol Divers 10, 585-597
    8. Rosenberg, H. F. (2008) J Leukoc Biol 83, 1079-1087
    9. Cho, S., Beintema, J. J., and Zhang, J. (2005) Genomics 85, 208-220
    10. Findlay, D., Herries, D. G., Mathias, A. P., Rabin, B. R., and Ross, C. A. (1961) Nature 190, 781-784
    11. Boix, E., and Nogues, M. V. (2007) Mol Biosyst 3, 317-335
    12. Pizzo, E., Varcamonti, M., Di Maro, A., Zanfardino, A., Giancola, C., and D'Alessio, G. (2008) FEBS J 275, 1283-1295
    13. Gleich, G. J., Loegering, D. A., Bell, M. P., Checkel, J. L., Ackerman, S. J., and McKean, D. J. (1986) Proceedings of the National Academy of Sciences of the United States of America 83, 3146-3150
    14. Hamann, K. J., Ten, R. M., Loegering, D. A., Jenkins, R. B., Heise, M. T., Schad, C. R., Pease, L. R., Gleich, G. J., and Barker, R. L. (1990) Genomics 7, 535-546
    15. Rosenberg, H. F., Dyer, K. D., Tiffany, H. L., and Gonzalez, M. (1995) Nat Genet 10, 219-223
    16. Wang, H. Y., Chang, H. T., Pai, T. W., Wu, C. I., Lee, Y. H., Chang, Y. H., Tai, H. L., Tang, C. Y., Chou, W. Y., and Chang, M. D. (2007) BMC molecular biology 8, 89
    17. Sorrentino, S., and Libonati, M. (1994) Archives of biochemistry and biophysics 312, 340-348
    18. Sorrentino, S., and Glitz, D. G. (1991) FEBS letters 288, 23-26
    19. Irie, M. (1997) Yakugaku zasshi : Journal of the Pharmaceutical Society of Japan 117, 561-582
    20. Peterson, C. G., Jornvall, H., and Venge, P. (1988) European journal of haematology 40, 415-423
    21. Rosenberg, H. F., Tenen, D. G., and Ackerman, S. J. (1989) Proceedings of the National Academy of Sciences of the United States of America 86, 4460-4464
    22. Sorrentino, S. (2010) FEBS letters 584, 2194-2200
    23. Woschnagg, C., Rubin, J., and Venge, P. (2009) J Immunol 183, 3949-3954
    24. Rosenberg, H. F. (1998) Cellular and molecular life sciences : CMLS 54, 795-803
    25. Mosimann, S. C., Newton, D. L., Youle, R. J., and James, M. N. (1996) Journal of molecular biology 260, 540-552
    26. Boix, E., Leonidas, D. D., Nikolovski, Z., Nogues, M. V., Cuchillo, C. M., and Acharya, K. R. (1999) Biochemistry 38, 16794-16801
    27. Laurents, D. V., Bruix, M., Jimenez, M. A., Santoro, J., Boix, E., Moussaoui, M., Nogues, M. V., and Rico, M. (2009) Biopolymers 91, 1018-1028
    28. Boix, E., Pulido, D., Moussaoui, M., Nogues, M. V., and Russi, S. (2012) Journal of structural biology 179, 1-9
    29. Mohan, C. G., Boix, E., Evans, H. R., Nikolovski, Z., Nogues, M. V., Cuchillo, C. M., and Acharya, K. R. (2002) Biochemistry 41, 12100-12106
    30. Khakzad, M. R., Mirsadraee, M., Sankian, M., Varasteh, A., and Meshkat, M. (2009) Iran J Allergy Asthma Immunol 8, 155-160
    31. Koh, G. C., Shek, L. P., Goh, D. Y., Van Bever, H., and Koh, D. S. (2007) Respiratory medicine 101, 696-705
    32. Niccoli, G., Ferrante, G., Cosentino, N., Conte, M., Belloni, F., Marino, M., Baca, M., Montone, R. A., Sabato, V., Schiavino, D., Patriarca, G., and Crea, F. Atherosclerosis 211, 606-611
    33. Venge, P., Bystrom, J., Carlson, M., Hakansson, L., Karawacjzyk, M., Peterson, C., Seveus, L., and Trulson, A. (1999) Clin Exp Allergy 29, 1172-1186
    34. Badar, A., Saeed, W., Hussain, M. M., and Aslam, M. (2004) J Ayub Med Coll Abbottabad 16, 66-71
    35. Hallgren, R., Terent, A., and Venge, P. (1983) J Neurol Sci 58, 57-71
    36. Ackerman, S. J., Gleich, G. J., Loegering, D. A., Richardson, B. A., and Butterworth, A. E. (1985) The American journal of tropical medicine and hygiene 34, 735-745
    37. Hamann, K. J., Gleich, G. J., Checkel, J. L., Loegering, D. A., McCall, J. W., and Barker, R. L. (1990) J Immunol 144, 3166-3173
    38. Lehrer, R. I., Szklarek, D., Barton, A., Ganz, T., Hamann, K. J., and Gleich, G. J. (1989) J Immunol 142, 4428-4434
    39. Rosenberg, H. F. (1995) The Journal of biological chemistry 270, 7876-7881
    40. Elshafie, A. I., Hlin, E., Hakansson, L. D., Elghazali, G., Safi, S. H., Ronnelid, J., and Venge, P. (2011) International journal for parasitology 41, 463-469
    41. Singh, A., and Batra, J. K. (2011) Biological chemistry 392, 337-346
    42. Choi, J., Callaway, Z., Kim, H. B., Fujisawa, T., and Kim, C. K. (2010) Pediatric allergy and immunology : official publication of the European Society of Pediatric Allergy and Immunology 21, 474-479
    43. Domachowske, J. B., Dyer, K. D., Adams, A. G., Leto, T. L., and Rosenberg, H. F. (1998) Nucleic acids research 26, 3358-3363
    44. Maeda, T., Kitazoe, M., Tada, H., de Llorens, R., Salomon, D. S., Ueda, M., Yamada, H., and Seno, M. (2002) Eur J Biochem 269, 307-316
    45. Motojima, S., Frigas, E., Loegering, D. A., and Gleich, G. J. (1989) The American review of respiratory disease 139, 801-805
    46. Carreras, E., Boix, E., Navarro, S., Rosenberg, H. F., Cuchillo, C. M., and Nogues, M. V. (2005) Molecular and cellular biochemistry 272, 1-7
    47. Torrent, M., Cuyas, E., Carreras, E., Navarro, S., Lopez, O., de la Maza, A., Nogues, M. V., Reshetnyak, Y. K., and Boix, E. (2007) Biochemistry 46, 720-733
    48. Young, J. D., Peterson, C. G., Venge, P., and Cohn, Z. A. (1986) Nature 321, 613-616
    49. Maeda, T., Mahara, K., Kitazoe, M., Futami, J., Takidani, A., Kosaka, M., Tada, H., Seno, M., and Yamada, H. (2002) Journal of biochemistry 132, 737-742
    50. Chang, K. C., Lo, C. W., Fan, T. C., Chang, M. D., Shu, C. W., Chang, C. H., Chung, C. T., Fang, S. L., Chao, C. C., Tsai, J. J., and Lai, Y. K. (2010) BMC cell biology 11, 6
    51. Torrent, M., de la Torre, B. G., Nogues, V. M., Andreu, D., and Boix, E. (2009) The Biochemical journal 421, 425-434
    52. Torrent, M., Pulido, D., de la Torre, B. G., Garcia-Mayoral, M. F., Nogues, M. V., Bruix, M., Andreu, D., and Boix, E. (2011) Journal of medicinal chemistry 54, 5237-5244
    53. Torrent, M., Odorizzi, F., Nogues, M. V., and Boix, E. (2010) Biomacromolecules 11, 1983-1990
    54. Conchillo-Sole, O., de Groot, N. S., Aviles, F. X., Vendrell, J., Daura, X., and Ventura, S. (2007) BMC bioinformatics 8, 65
    55. Pulido, D., Moussaoui, M., Andreu, D., Nogues, M. V., Torrent, M., and Boix, E. (2012) Antimicrobial agents and chemotherapy 56, 2378-2385
    56. Durack, D. T., Sumi, S. M., and Klebanoff, S. J. (1979) Proceedings of the National Academy of Sciences of the United States of America 76, 1443-1447
    57. Fredens, K., Dahl, R., and Venge, P. (1982) The Journal of allergy and clinical immunology 70, 361-366
    58. Gleich, G. J. (1989) The Journal of allergy and clinical immunology 84, 1024-1027
    59. Futami, J., Tsushima, Y., Murato, Y., Tada, H., Sasaki, J., Seno, M., and Yamada, H. (1997) DNA and cell biology 16, 413-419
    60. Sorrentino, S., Tucker, G. K., and Glitz, D. G. (1988) J Biol Chem 263, 16125-16131
    61. Yasuda, T., Mizuta, K., Sato, W., and Kishi, K. (1990) Eur J Biochem 191, 523-529
    62. Mizuta, K., Awazu, S., Yasuda, T., and Kishi, K. (1990) Arch Biochem Biophys 281, 144-151
    63. Shapiro, R., and Vallee, B. L. (1991) Biochemistry 30, 2246-2255
    64. Kardana, A., Bagshawe, K. D., Coles, B., Read, D., and Taylor, M. (1993) Br J Cancer 67, 686-692
    65. Domachowske, J. B., Dyer, K. D., Bonville, C. A., and Rosenberg, H. F. (1998) The Journal of infectious diseases 177, 1458-1464
    66. Lee-Huang, S., Huang, P. L., Sun, Y., Kung, H. F., Blithe, D. L., and Chen, H. C. (1999) Proceedings of the National Academy of Sciences of the United States of America 96, 2678-2681
    67. Rugeles, M. T., Trubey, C. M., Bedoya, V. I., Pinto, L. A., Oppenheim, J. J., Rybak, S. M., and Shearer, G. M. (2003) AIDS 17, 481-486
    68. Kephart, G. M., Alexander, J. A., Arora, A. S., Romero, Y., Smyrk, T. C., Talley, N. J., and Kita, H. (2010) The American journal of gastroenterology 105, 298-307
    69. Liu, G. T., Hwang, C. S., Hsieh, C. H., Lu, C. H., Chang, S. L., Lee, J. C., Huang, C. F., and Chang, H. T. (2013) Mediators of inflammation 2013, 421389
    70. Chang, H. T., Pai, T. W., Fan, T. C., Su, B. H., Wu, P. C., Tang, C. Y., Chang, C. T., Liu, S. H., and Chang, M. D. (2006) BMC bioinformatics 7, 38
    71. Prydz, K., and Dalen, K. T. (2000) Journal of cell science 113 Pt 2, 193-205
    72. Capila, I., and Linhardt, R. J. (2002) Angew Chem Int Ed Engl 41, 391-412
    73. Linhardt, R. J., Ampofo, S. A., Fareed, J., Hoppensteadt, D., Mulliken, J. B., and Folkman, J. (1992) Biochemistry 31, 12441-12445
    74. Iozzo, R. V. (1998) Annual review of biochemistry 67, 609-652
    75. Sasisekharan, R., Shriver, Z., Venkataraman, G., and Narayanasami, U. (2002) Nat Rev Cancer 2, 521-528
    76. Hacker, U., Nybakken, K., and Perrimon, N. (2005) Nat Rev Mol Cell Biol 6, 530-541
    77. Sasisekharan, R., Raman, R., and Prabhakar, V. (2006) Annual review of biomedical engineering 8, 181-231
    78. Mulloy, B., and Rider, C. C. (2006) Biochemical Society transactions 34, 409-413
    79. Fan, T. C., Chang, H. T., Chen, I. W., Wang, H. Y., and Chang, M. D. (2007) Traffic 8, 1778-1795
    80. Hung, S. C., Lu, X. A., Lee, J. C., Chang, M. D., Fang, S. L., Fan, T. C., Zulueta, M. M., and Zhong, Y. Q. (2012) Organic & biomolecular chemistry 10, 760-772
    81. Munoz, E. M., and Linhardt, R. J. (2004) Arterioscler Thromb Vasc Biol 24, 1549-1557
    82. Cardin, A. D., and Weintraub, H. J. (1989) Arteriosclerosis 9, 21-32
    83. Sobel, M., Soler, D. F., Kermode, J. C., and Harris, R. B. (1992) J Biol Chem 267, 8857-8862
    84. Fan, T. C., Fang, S. L., Hwang, C. S., Hsu, C. Y., Lu, X. A., Hung, S. C., Lin, S. C., and Chang, M. D. (2008) The Journal of biological chemistry 283, 25468-25474
    85. Lien, P. C., Kuo, P. H., Chen, C. J., Chang, H. H., Fang, S. L., Wu, W. S., Lai, Y. K., Pai, T. W., and Chang, M. D. (2013) BioMed Research International 2013
    86. Hung, T. J., Chang, W. T., Tomiya, N., Lee, Y. C., Chang, H. T., Chen, C. J., Kuo, P. H., Fan, T. C., and Chang, M. D. (2013) International journal of molecular sciences 14, 19067-19085
    87. Rabenstein, D. L. (2002) Natural product reports 19, 312-331
    88. Thompson, L. D., Pantoliano, M. W., and Springer, B. A. (1994) Biochemistry 33, 3831-3840
    89. Gandhi, N. S., and Mancera, R. L. (2008) Chemical biology & drug design 72, 455-482
    90. Torrent, M., Nogues, M. V., and Boix, E. (2011) Journal of molecular recognition : JMR 24, 90-100
    91. Garcia-Mayoral, M. F., Moussaoui, M., de la Torre, B. G., Andreu, D., Boix, E., Nogues, M. V., Rico, M., Laurents, D. V., and Bruix, M. (2010) Biophysical journal 98, 2702-2711
    92. Garcia-Mayoral, M. F., Canales, A., Diaz, D., Lopez-Prados, J., Moussaoui, M., de Paz, J. L., Angulo, J., Nieto, P. M., Jimenez-Barbero, J., Boix, E., and Bruix, M. (2013) ACS chemical biology 8, 144-151
    93. Fang, S. L., Fan, T. C., Fu, H. W., Chen, C. J., Hwang, C. S., Hung, T. J., Lin, L. Y., and Chang, M. D. (2013) Plos One 8, e57318
    94. Nunez, S., Venhorst, J., and Kruse, C. G. (2012) Drug discovery today 17, 10-22
    95. Tellinghuisen, J. (2007) J Phys Chem B 111, 11531-11537
    96. Ladbury, J. E., Klebe, G., and Freire, E. (2010) Nature reviews. Drug discovery 9, 23-27
    97. Liang, Y. (2008) Acta biochimica et biophysica Sinica 40, 565-576
    98. Rickert, J., Brecht, A., and Gopel, W. (1997) Biosensors & bioelectronics 12, 567-575
    99. Marx, K. A. (2003) Biomacromolecules 4, 1099-1120
    100. Tseng, M. C., Chang, Y. P., and Chu, Y. H. (2007) Anal Biochem 371, 1-9
    101. Ebara, Y., and Okahata, Y. (1994) J Am Chem Soc 116, 11209-11212
    102. Nishino, H., Nihira, T., Mori, T., and Okahata, Y. (2004) J Am Chem Soc 126, 2264-2265
    103. Pei, Z. C., Anderson, H., Aastrup, T., and Ramstrom, O. (2005) Biosensors & bioelectronics 21, 60-66
    104. Decker, J., Weinberger, K., Prohaska, E., Hauck, S., Kosslinger, C., Wolf, H., and Hengerer, A. (2000) J Immunol Methods 233, 159-165
    105. Lau, O. W., Shao, B., and Lee, M. T. W. (2000) Anal Chim Acta 403, 49-56
    106. Liu, Y., Yu, X., Zhao, R., Shangguan, D. H., Bo, Z. Y., and Liu, G. Q. (2003) Biosensors & bioelectronics 18, 1419-1427
    107. Shim, H., and Harris, Z. L. (2003) The Journal of nutrition 133, 1527S-1531S
    108. Briley-Saebo, K., Hustvedt, S. O., Haldorsen, A., and Bjornerud, A. (2004) Journal of magnetic resonance imaging : JMRI 20, 622-631
    109. Sheth, S. (2003) Pediatric radiology 33, 373-377
    110. Berry, C. C., and Curtis, A. S. G. (2003) J Phys D Appl Phys 36, R198-R206
    111. Yang, C. C., Yang, S. Y., Chieh, J. J., Horng, H. E., Hong, C. Y., Yang, H. C., Chen, K. H., Shih, B. Y., Chen, T. F., and Chiu, M. J. (2011) ACS chemical neuroscience 2, 500-505
    112. van Kasteren, S. I., Campbell, S. J., Serres, S., Anthony, D. C., Sibson, N. R., and Davis, B. G. (2009) Proceedings of the National Academy of Sciences of the United States of America 106, 18-23
    113. Yang, S. Y., Chieh, J. J., Wang, W. C., Yu, C. Y., Lan, C. B., Chen, J. H., Horng, H. E., Hong, C. Y., Yang, H. C., and Huang, W. (2008) Journal of virological methods 153, 250-252
    114. Chieh, J. J., and Hong, C. Y. (2011) The Review of scientific instruments 82, 084301
    115. Yang, W., Gu, A. Z., Zeng, S. Y., Li, D., He, M., and Shi, H. C. (2011) Journal of microbiological methods 84, 447-453
    116. Armstrong, S. H., Jr., Budka, M. J., and et al. (1947) Journal of the American Chemical Society 69, 1747-1753
    117. Soini, E., and Kojola, H. (1983) Clin Chem 29, 65-68
    118. Takeuchi, T., Nishikawa, T., Matsukawa, R., and Matsui, J. (1995) Analytical chemistry 67, 2655-2658
    119. Soini, E., and Lovgren, T. (1987) Crit Rev Anal Chem 18, 105-154
    120. Lee, Y. C. (2001) Analytical biochemistry 297, 123-127
    121. Dawson, P. E., Muir, T. W., Clark-Lewis, I., and Kent, S. B. (1994) Science 266, 776-779
    122. Lee, R. T., and Lee, Y. C. (1987) Glycoconjugate J 4, 317-328
    123. Calabro, A., Benavides, M., Tammi, M., Hascall, V. C., and Midura, R. J. (2000) Glycobiology 10, 273-281
    124. Leonidas, D. D., Boix, E., Prill, R., Suzuki, M., Turton, R., Minson, K., Swaminathan, G. J., Youle, R. J., and Acharya, K. R. (2001) J Biol Chem 276, 15009-15017
    125. Swaminathan, G. J., Holloway, D. E., Veluraja, K., and Acharya, K. R. (2002) Biochemistry 41, 3341-3352
    126. Trott, O., and Olson, A. J. J Comput Chem 31, 455-461
    127. Rosenberg, H. F., and Dyer, K. D. (1995) The Journal of biological chemistry 270, 21539-21544
    128. Baranauskiene, L., Petrikaite, V., Matuliene, J., and Matulis, D. (2009) International journal of molecular sciences 10, 2752-2762
    129. Dews, I., Wiseman, W. T., al-Khawaja, I., Stephens, J., and VandenBurg, M. (1989) J Hum Hypertens 3 Suppl 1, 35-39
    130. Healy, M. J. (1972) The Biochemical journal 130, 207-210
    131. Parker, R. B., and Waud, D. R. (1971) The Journal of pharmacology and experimental therapeutics 177, 1-12
    132. Reichelt, P., Schwarz, C., and Donzeau, M. (2006) Protein Expr Purif 46, 483-488
    133. Lee, J. C., Lu, X. A., Kulkarni, S. S., Wen, Y. S., and Hung, S. C. (2004) Journal of the American Chemical Society 126, 476-477
    134. Chang, W. T. (2010) Master thesis.
    135. Casu, B., Choay, J., Ferro, D. R., Gatti, G., Jacquinet, J. C., Petitou, M., Provasoli, A., Ragazzi, M., Sinay, P., and Torri, G. (1986) Nature 322, 215-216
    136. Boix, E., Nikolovski, Z., Moiseyev, G. P., Rosenberg, H. F., Cuchillo, C. M., and Nogues, M. V. (1999) The Journal of biological chemistry 274, 15605-15614
    137. Gohlke, H., and Klebe, G. (2002) Angew Chem Int Ed Engl 41, 2644-2676
    138. Ye, S., Luo, Y., Lu, W., Jones, R. B., Linhardt, R. J., Capila, I., Toida, T., Kan, M., Pelletier, H., and McKeehan, W. L. (2001) Biochemistry 40, 14429-14439
    139. Copeland, R., Balasubramaniam, A., Tiwari, V., Zhang, F., Bridges, A., Linhardt, R. J., Shukla, D., and Liu, J. (2008) Biochemistry 47, 5774-5783
    140. Seki, Y., Mizukura, M., Ichimiya, T., Suda, Y., Nishihara, S., Masuda, M., and Takase-Yoden, S. (2012) Virology 424, 56-66
    141. Kubler-Kielb, J. (2011) Methods Mol Biol 751, 317-327
    142. Ficht, S., Payne, R. J., Guy, R. T., and Wong, C. H. (2008) Chemistry-a European Journal 14, 3620-3629
    143. Hu, Y. P., Zhong, Y. Q., Chen, Z. G., Chen, C. Y., Shi, Z., Zulueta, M. M., Ku, C. C., Lee, P. Y., Wang, C. C., and Hung, S. C. (2012) Journal of the American Chemical Society 134, 20722-20727
    144. Jin, L., Abrahams, J. P., Skinner, R., Petitou, M., Pike, R. N., and Carrell, R. W. (1997) Proceedings of the National Academy of Sciences of the United States of America 94, 14683-14688
    145. Murphy, J. W., Cho, Y., Sachpatzidis, A., Fan, C., Hodsdon, M. E., and Lolis, E. (2007) The Journal of biological chemistry 282, 10018-10027
    146. Miyamoto, M. M., Koop, B. F., Slightom, J. L., Goodman, M., and Tennant, M. R. (1988) Proc Natl Acad Sci U S A 85, 7627-7631
    147. Ahl, I. M., Jonsson, B. H., and Tibell, L. A. (2009) Biochemistry 48, 9932-9940
    148. Brown, A., Robinson, C. J., Gallagher, J. T., and Blundell, T. L. (2013) Biophysical journal 104, 1720-1730
    149. Guimond, S., Maccarana, M., Olwin, B. B., Lindahl, U., and Rapraeger, A. C. (1993) J Biol Chem 268, 23906-23914
    150. Ishihara, M., Kariya, Y., Kikuchi, H., Minamisawa, T., and Yoshida, K. (1997) Journal of biochemistry 121, 345-349
    151. Rostovtsev, V. V., Green, L. G., Fokin, V. V., and Sharpless, K. B. (2002) Angew Chem Int Ed Engl 41, 2596-2599
    152. Gupta, A. K., and Wells, S. (2004) IEEE transactions on nanobioscience 3, 66-73
    153. Portet, D., Denizot, B., Rump, E., Lejeune, J. J., and Jallet, P. (2001) Journal of colloid and interface science 238, 37-42
    154. Gupta, A. K., and Gupta, M. (2005) Biomaterials 26, 3995-4021
    155. Sun, C., Du, K., Fang, C., Bhattarai, N., Veiseh, O., Kievit, F., Stephen, Z., Lee, D., Ellenbogen, R. G., Ratner, B., and Zhang, M. (2010) ACS nano 4, 2402-2410
    156. Boix, E., Salazar, V. A., Torrent, M., Pulido, D., Nogues, M. V., and Moussaoui, M. (2012) Biological chemistry 393, 801-815
    157. Zhou, X., Sun, Q., Kini, R. M., and Sivaraman, J. (2008) Protein science : a publication of the Protein Society 17, 1798-1804
    158. Fee, C. J. (2013) Methods Mol Biol 996, 313-322
    159. Kausaite, A., Ramanaviciene, A., Mostovojus, V., and Ramanavicius, A. (2007) Medicina (Kaunas) 43, 355-365
    160. Deras, I. L., Kawasaki, N., and Lee, Y. C. (1998) Carbohydrate research 306, 469-471
    161. Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., Valentin, F., Wallace, I. M., Wilm, A., Lopez, R., Thompson, J. D., Gibson, T. J., and Higgins, D. G. (2007) Bioinformatics 23, 2947-2948
    162. Mowafi, M., Khadr, Z., Bennett, G., Hill, A., Kawachi, I., and Subramanian, S. V. (2012) Health & place 18, 385-390
    163. Nair, J. R., and Chatterjee, K. (2010) Journal of medical case reports 4, 177
    164. Luedtke, N. W., Carmichael, P., and Tor, Y. (2003) Journal of the American Chemical Society 125, 12374-12375
    165. Bida, J. P., and Maher, L. J., 3rd. (2012) Rna 18, 385-393
    166. Capila, I., Hernaiz, M. J., Mo, Y. D., Mealy, T. R., Campos, B., Dedman, J. R., Linhardt, R. J., and Seaton, B. A. (2001) Structure 9, 57-64
    167. Xue, Y., Lee, S., and Ha, Y. (2011) Proceedings of the National Academy of Sciences of the United States of America 108, 16229-16234
    168. Swaminathan, G. J., Myszka, D. G., Katsamba, P. S., Ohnuki, L. E., Gleich, G. J., and Acharya, K. R. (2005) Biochemistry 44, 14152-14158
    169. Faham, S., Hileman, R. E., Fromm, J. R., Linhardt, R. J., and Rees, D. C. (1996) Science 271, 1116-1120
    170. Pellegrini, L., Burke, D. F., von Delft, F., Mulloy, B., and Blundell, T. L. (2000) Nature 407, 1029-1034
    171. Schlessinger, J., Plotnikov, A. N., Ibrahimi, O. A., Eliseenkova, A. V., Yeh, B. K., Yayon, A., Linhardt, R. J., and Mohammadi, M. (2000) Molecular cell 6, 743-750
    172. Parkash, V., Leppanen, V. M., Virtanen, H., Jurvansuu, J. M., Bespalov, M. M., Sidorova, Y. A., Runeberg-Roos, P., Saarma, M., and Goldman, A. (2008) The Journal of biological chemistry 283, 35164-35172
    173. Han, Y. H., Garron, M. L., Kim, H. Y., Kim, W. S., Zhang, Z., Ryu, K. S., Shaya, D., Xiao, Z., Cheong, C., Kim, Y. S., Linhardt, R. J., Jeon, Y. H., and Cygler, M. (2009) The Journal of biological chemistry 284, 34019-34027
    174. Lietha, D., Chirgadze, D. Y., Mulloy, B., Blundell, T. L., and Gherardi, E. (2001) The EMBO journal 20, 5543-5555
    175. Sharma, P., Dube, D., Sinha, M., Dey, S., Kaur, P., Sharma, S., and Singh, T. P. (2012) International journal of biochemistry and molecular biology 3, 86-94
    176. Li, W., and Huntington, J. A. (2012) Blood 120, 459-467
    177. Dementiev, A., Petitou, M., Herbert, J. M., and Gettins, P. G. (2004) Nature structural & molecular biology 11, 863-867
    178. Li, W., Johnson, D. J., Esmon, C. T., and Huntington, J. A. (2004) Nature structural & molecular biology 11, 857-862
    179. Johnson, D. J., Li, W., Adams, T. E., and Huntington, J. A. (2006) The EMBO journal 25, 2029-2037
    180. Li, W., Adams, T. E., Nangalia, J., Esmon, C. T., and Huntington, J. A. (2008) Proceedings of the National Academy of Sciences of the United States of America 105, 4661-4666
    181. Johnson, D. J., Langdown, J., and Huntington, J. A. (2010) Proceedings of the National Academy of Sciences of the United States of America 107, 645-650
    182. Ganesh, V. K., Smith, S. A., Kotwal, G. J., and Murthy, K. H. (2004) Proceedings of the National Academy of Sciences of the United States of America 101, 8924-8929

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE