研究生: |
辛景翰 Jing-Han Hsin |
---|---|
論文名稱: |
有限投影角度下以線性規劃法重建電腦斷層影像 Computed Tomography Reconstruction by Linear Programming from Limited Angle Projections |
指導教授: |
葉廷仁
Ting-Jen Yeh |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 中文 |
論文頁數: | 95 |
中文關鍵詞: | 影像重建 、線性規劃法 、有限投影角度 |
外文關鍵詞: | X -ray, Linear Programming, Limited Angle |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究的目標在於建立一個運用於PCB檢測的X射線非破壞性檢測的影像重建演算法。X射線具有可穿透性,可探測物體的物性與內部缺陷,但是單獨的X射線投影僅僅只記錄投影中的資訊,並無法正確判斷出內藏的瑕疵位置,所以必須建立一套影像重建演算法。本研究採用線型感測器的斷層掃瞄系統,嘗試從數個不同角度對PCB做投影掃瞄。雖然受限於待測物的幾何限制,使得系統掃瞄時會有投影角度的限制,使得投影資訊不足。由於檢測目標主要為BGA錫球,因此在只有單一物質一種吸收率下,可將問題簡化成為重建二值影像,因此採用線性規劃演算法( Linear Programming, LP)在有限投影角度下重建電腦斷層掃瞄影像(computed tomography, CT)。另外為了讓Linear Programming可重建多值影像,提出多值重建的Linear Programming修正演算法。為了有效減少重建時間,以及消除有雜訊的投影誤差,本研究分別提出局部重建法和Moving average method 來改善Linear Programming演算法,均有改善影像效果。
[1] "Charting a DFT Course for Limited-access Boards," Agilent Technologies, 2002.
[2] S. Krimmel, J. Stephan, and J. Baumann, “ 3D computed tomography using a microfocus X-ray source: Analysis of artifact formation in the reconstructed images using simulated as well as experimental projection data,” Nuclear Instruments and Methods in Physics Research, Section A-542, pp. 399-407, February 2005.
[3] G.T. Herman, “ Correction for beam hardening in computed tomography,” Physics in Medicine and Biology, Vol. 24, pp. 81-106, 1979.
[4] P. Hammersberg, and M. Mangard, “ Correction for beam hardening artifacts in computerized tomography,” Journal of X-ray Science Technology, Vol. 8, pp. 75-93, 1998.
[5] F. Jian, and L. Hongnian, “ Beam-hardening correction method based on original sonogram for X-CT,” Elsevier, Nuclear Instruments and Methods in Physics Research, Section A-556, pp. 379-385, 2005.
[6] 李國翔,「含BGA 電路板之X 光3D 影像重建技術」,碩士論文,國立清華大學動力機械工程學系,2006.
[7] S. Gondrom, and M. Maisl, “ 3D Reconstructions of Micro-System Using X-Ray Tomographic Methods,” The 16th World Conference on Nondestructive Testing, Paper Code 568, Montreal, 2004.
[8] S. Gondrom, S. Schröpfer, “ Digital computed laminography and tomosynthesis functional principles and industrial applications,” DGZfP Proceedings BB 67-CD, Paper 11, March 1999.
[9] S. Hata, and D. shima, “ Relative Stereo Method for 3-D Measurement in Production Lines,” The 9th IEEE International Conference on Emerging Technologies and Factory Automation, Vol. 2, pp, 479-482, Lisbon, 2003.
[10] A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging: IEEE Press, 1988.
[11] R. N Bracewell, The Fourier Transform and Its Applications, 2nd ed., McGraw-Hill, Inc., 1986.
[12] S. Kaczmarz, “Angenaherte auflosung von systemen linear gleichungen,” Bull. Acad. Pol. Sci. Lett. A, Vol. 6-8A, pp. 355-357, 1937.
[13] 瞿中, 鄒永貴, 沈寬, 王玨, and 徐問之, “工業CT 窄角扇束掃描下的代數疊代圖像重建算法研究, ” 計算機研究與發展, Vol. 42, pp. 1882-1888, 2005.
[14] G. T. Herman and A. Kuba, Discrete Tomography: Foundations, Algorithms and Applications 1999.
[15] P. Gritzmann, S. de Vries, and M. Wiegelmann. Approximating binary images from discrete X-rays. SIAM J. Optimization, 11(2):522–546, 2000.
[16] S. Weber, T. Schüle, C. Schnörr, J. Hornegger, A linear programming approach to limited angle 3D reconstruction from DSA projections, Methods of Information in Medicine, 43 (2004) 320-326.
[17] S. Weber, C. Schnörr, J. Hornegger, A linear programming relaxation for binary tomography with smoothness priors, in: Proceedings of International Workshop on Combinatorial Image Analysis (IWCIA'03), Palermo, Italy, May 14-16, 2003.
[18] 高士超,「有限投影資訊下提昇X射線影像重建品質的方法」, 碩士論文, 國立清華大學動力機械工程學系, 2007。
[19] S. Kaczmarz, “Angenaherte auflosung von systemen linear gleichungen,” Bull. Acad. Pol. Sci. Lett. A, Vol. 6-8A, pp.355-357, 1937.
[20] K. Mueller, R. Yagel, and J.J. Wheller, “ Anti-Aliased Three-Dimensional Cone-Beam Reconstruction of Low-Contrast Object with Algebraic Methods,” IEEE Transactions on Medical Imaging, Vol. 18, No. 6, pp. 519-537,1999.
[21] Y. Censor, “ Binary Steering in discrete tomography reconstruction with sequential and simultaneous iterative algorithms, ” Linear Algebra and its Applications, Vol. 339, Number 1, 15 December 2001 , pp. 111-124(14).
[22] S. M. Rooks, B. Benhabib, and K. C. Smith, “ Development of an Inspection Process for Ball-Grid-Array Technology Using Scanned -Beam X-Ray Laminography, ” presented at IEEE Transmitions on Components, Packaging, and Manufacturing Technology, 1995.
[23] H. Kudo, T. Saito, “ Image reconstruction from limited view angle projection data, ” Proceedings-ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing, 1987, pp. 1187-1190.
[24] J. Velikina, S. Leng, GH. Chen, “ Limited view angle tomographic image reconstruction via total variation minimization, ” In Proceedings of SPIE, Vol. 6510(2), Physics of Medical Imaging, 2007, p 651020.
[25] E.Y. Sidky, K. Chien-Min, X. Pan, “ Accurate image reconstruction from few-views and limited-angle data in divergent-beam CT, ” Journal of X-Ray Science and Technology, Vol. 14, No. 2, pp. 119-39, 2006.
[26] J. Serra, P. Soille, Mathematical Morphology and Its Applications to Image and Signal Processing, Boston: Kluwer Academic Publishers, 1996.
[27] J. Kittler, “ On the accuracy of the sobel edge detector, ” Image and Vision Computing, Vol. 1, No.1, Feb, 1983, pp. 37-42.
[28] N. Baba, K. Murata, “ Image reconstruction from limited-angle projections, ” Optik, Vol. 60, No.1, Dec, 1981, PP. 103-8.
[29] V. V. Klyuev, V. Y. Maklashevskii, A. A. Timonov, V. N. Filinov, “ Image reconstruction from limited-angle data in industrial computed tomography, ” Physics-Doklady, Vol. 38, No.7, July, 1993, pp. 266-8.
[30] M. H. Buonocore, W. R. Brody, A. Macovski, “ Fast minimum variance estimator for limited angle CT image reconstruction, ” Medical Physics, Vol. 8, No.5, Sept.- Oct., 1981, PP. 695-702.