簡易檢索 / 詳目顯示

研究生: 辛景翰
Jing-Han Hsin
論文名稱: 有限投影角度下以線性規劃法重建電腦斷層影像
Computed Tomography Reconstruction by Linear Programming from Limited Angle Projections
指導教授: 葉廷仁
Ting-Jen Yeh
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 95
中文關鍵詞: 影像重建線性規劃法有限投影角度
外文關鍵詞: X -ray, Linear Programming, Limited Angle
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究的目標在於建立一個運用於PCB檢測的X射線非破壞性檢測的影像重建演算法。X射線具有可穿透性,可探測物體的物性與內部缺陷,但是單獨的X射線投影僅僅只記錄投影中的資訊,並無法正確判斷出內藏的瑕疵位置,所以必須建立一套影像重建演算法。本研究採用線型感測器的斷層掃瞄系統,嘗試從數個不同角度對PCB做投影掃瞄。雖然受限於待測物的幾何限制,使得系統掃瞄時會有投影角度的限制,使得投影資訊不足。由於檢測目標主要為BGA錫球,因此在只有單一物質一種吸收率下,可將問題簡化成為重建二值影像,因此採用線性規劃演算法( Linear Programming, LP)在有限投影角度下重建電腦斷層掃瞄影像(computed tomography, CT)。另外為了讓Linear Programming可重建多值影像,提出多值重建的Linear Programming修正演算法。為了有效減少重建時間,以及消除有雜訊的投影誤差,本研究分別提出局部重建法和Moving average method 來改善Linear Programming演算法,均有改善影像效果。


    目錄 摘要 I 誌謝辭 II 目錄 III 圖目錄 VI 表目錄 X 第一章 緒論 1 1.1 研究背景 1 1.2 研究目標 4 1.3 論文架構 5 第二章 X射線影像重建介紹 7 2.1 X射線的原理與特性 7 2.2 X射線的投射方式 11 2.3 X射線的投影法 12 2.4 電腦斷層掃描的數學理論 16 2.4.1 拉登轉換 (Radon Transform) 16 2.4.2 傅立葉切片理論 ( Fourier Slice Theorem ) 17 2.5 電腦斷層掃描演算法 19 2.5.1 濾波反投影法 ( Filtered Back-Projection, FBP ) 19 2.5.2 代數重建法( Algebraic Reconstruction Technique, ART ) 21 2.5.3 影像重建品質指標 27 2.6 二值影像 ( Binary Tomography) 28 第三章 研究動機與方法 31 3.1 線性規劃演算法的選擇動機與條件 31 3.2 線性規劃演算法重建理論 32 3.3 權係數矩陣與影像品質關係 37 3.4 影響影像品質因素 41 3.4.1 投影數與權係數矩陣模型 41 3.4.2 投影角度範圍 43 3.5 Linear Programming 與FBP、ART的比較 45 第四章 改善Linear Programming 方法 49 4.1 局部影像重建 49 4.1.1 局部影像重建方法與步驟 50 4.1.2 局部影像重建的模擬結果 52 4.2 Linear Programming多值重建 56 第五章 實際重建問題與改善方法 64 5.1 雜訊對重建影像的影響 64 5.2 Moving average濾除雜訊 67 5.3 邊界效應 74 5.4 改善邊界效應 77 第六章 結論與未來工作 81 6.1 結論 81 6.2 未來工作 82 參考文獻 84 附錄 89

    [1] "Charting a DFT Course for Limited-access Boards," Agilent Technologies, 2002.

    [2] S. Krimmel, J. Stephan, and J. Baumann, “ 3D computed tomography using a microfocus X-ray source: Analysis of artifact formation in the reconstructed images using simulated as well as experimental projection data,” Nuclear Instruments and Methods in Physics Research, Section A-542, pp. 399-407, February 2005.

    [3] G.T. Herman, “ Correction for beam hardening in computed tomography,” Physics in Medicine and Biology, Vol. 24, pp. 81-106, 1979.

    [4] P. Hammersberg, and M. Mangard, “ Correction for beam hardening artifacts in computerized tomography,” Journal of X-ray Science Technology, Vol. 8, pp. 75-93, 1998.

    [5] F. Jian, and L. Hongnian, “ Beam-hardening correction method based on original sonogram for X-CT,” Elsevier, Nuclear Instruments and Methods in Physics Research, Section A-556, pp. 379-385, 2005.

    [6] 李國翔,「含BGA 電路板之X 光3D 影像重建技術」,碩士論文,國立清華大學動力機械工程學系,2006.

    [7] S. Gondrom, and M. Maisl, “ 3D Reconstructions of Micro-System Using X-Ray Tomographic Methods,” The 16th World Conference on Nondestructive Testing, Paper Code 568, Montreal, 2004.

    [8] S. Gondrom, S. Schröpfer, “ Digital computed laminography and tomosynthesis functional principles and industrial applications,” DGZfP Proceedings BB 67-CD, Paper 11, March 1999.

    [9] S. Hata, and D. shima, “ Relative Stereo Method for 3-D Measurement in Production Lines,” The 9th IEEE International Conference on Emerging Technologies and Factory Automation, Vol. 2, pp, 479-482, Lisbon, 2003.

    [10] A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging: IEEE Press, 1988.

    [11] R. N Bracewell, The Fourier Transform and Its Applications, 2nd ed., McGraw-Hill, Inc., 1986.

    [12] S. Kaczmarz, “Angenaherte auflosung von systemen linear gleichungen,” Bull. Acad. Pol. Sci. Lett. A, Vol. 6-8A, pp. 355-357, 1937.

    [13] 瞿中, 鄒永貴, 沈寬, 王玨, and 徐問之, “工業CT 窄角扇束掃描下的代數疊代圖像重建算法研究, ” 計算機研究與發展, Vol. 42, pp. 1882-1888, 2005.

    [14] G. T. Herman and A. Kuba, Discrete Tomography: Foundations, Algorithms and Applications 1999.

    [15] P. Gritzmann, S. de Vries, and M. Wiegelmann. Approximating binary images from discrete X-rays. SIAM J. Optimization, 11(2):522–546, 2000.

    [16] S. Weber, T. Schüle, C. Schnörr, J. Hornegger, A linear programming approach to limited angle 3D reconstruction from DSA projections, Methods of Information in Medicine, 43 (2004) 320-326.

    [17] S. Weber, C. Schnörr, J. Hornegger, A linear programming relaxation for binary tomography with smoothness priors, in: Proceedings of International Workshop on Combinatorial Image Analysis (IWCIA'03), Palermo, Italy, May 14-16, 2003.

    [18] 高士超,「有限投影資訊下提昇X射線影像重建品質的方法」, 碩士論文, 國立清華大學動力機械工程學系, 2007。

    [19] S. Kaczmarz, “Angenaherte auflosung von systemen linear gleichungen,” Bull. Acad. Pol. Sci. Lett. A, Vol. 6-8A, pp.355-357, 1937.

    [20] K. Mueller, R. Yagel, and J.J. Wheller, “ Anti-Aliased Three-Dimensional Cone-Beam Reconstruction of Low-Contrast Object with Algebraic Methods,” IEEE Transactions on Medical Imaging, Vol. 18, No. 6, pp. 519-537,1999.
    [21] Y. Censor, “ Binary Steering in discrete tomography reconstruction with sequential and simultaneous iterative algorithms, ” Linear Algebra and its Applications, Vol. 339, Number 1, 15 December 2001 , pp. 111-124(14).

    [22] S. M. Rooks, B. Benhabib, and K. C. Smith, “ Development of an Inspection Process for Ball-Grid-Array Technology Using Scanned -Beam X-Ray Laminography, ” presented at IEEE Transmitions on Components, Packaging, and Manufacturing Technology, 1995.

    [23] H. Kudo, T. Saito, “ Image reconstruction from limited view angle projection data, ” Proceedings-ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing, 1987, pp. 1187-1190.

    [24] J. Velikina, S. Leng, GH. Chen, “ Limited view angle tomographic image reconstruction via total variation minimization, ” In Proceedings of SPIE, Vol. 6510(2), Physics of Medical Imaging, 2007, p 651020.

    [25] E.Y. Sidky, K. Chien-Min, X. Pan, “ Accurate image reconstruction from few-views and limited-angle data in divergent-beam CT, ” Journal of X-Ray Science and Technology, Vol. 14, No. 2, pp. 119-39, 2006.

    [26] J. Serra, P. Soille, Mathematical Morphology and Its Applications to Image and Signal Processing, Boston: Kluwer Academic Publishers, 1996.

    [27] J. Kittler, “ On the accuracy of the sobel edge detector, ” Image and Vision Computing, Vol. 1, No.1, Feb, 1983, pp. 37-42.

    [28] N. Baba, K. Murata, “ Image reconstruction from limited-angle projections, ” Optik, Vol. 60, No.1, Dec, 1981, PP. 103-8.

    [29] V. V. Klyuev, V. Y. Maklashevskii, A. A. Timonov, V. N. Filinov, “ Image reconstruction from limited-angle data in industrial computed tomography, ” Physics-Doklady, Vol. 38, No.7, July, 1993, pp. 266-8.

    [30] M. H. Buonocore, W. R. Brody, A. Macovski, “ Fast minimum variance estimator for limited angle CT image reconstruction, ” Medical Physics, Vol. 8, No.5, Sept.- Oct., 1981, PP. 695-702.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE