研究生: |
吳映龍 Wu, Ying-Lung |
---|---|
論文名稱: |
以微流體免疫捕捉技術分離微量仿生細胞之研究 A Study on Isolation of Rare Biomimetic Cells Via Microfluidic Immuno-capture Technique |
指導教授: |
蘇育全
Su, Yu-Chuan 許博淵 Shew, Bor-Yuan |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 先進光源科技學位學程 Degree Program of Science and Technology of Synchrotron Light Source |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 57 |
中文關鍵詞: | 微流體晶片 、免疫捕捉 、專一性鍵結 、陣列微結構 |
外文關鍵詞: | Microfluidic Chips, Immuno-Capture, Specific Bonding, Micro-Array Structure |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究嘗試以具微結構陣列之微流體晶片,利用免疫捕捉的方式,分離血液中微量濃度的循環性腫瘤細胞,藉此達到早期發現癌症的目的,或是即時評估治療的效果。本研究利用黃光微影與模造技術,製作以二甲基矽氧烷(Polydimethylsiloxane, PDMS)為材料的陣列結構微流體晶片,除了建立捕捉專一性仿生粒子的檢測平台以及實驗方法外,還特別針對晶片之微結構陣列幾何參數,探討其對於捕捉效率之影響,歸納出較佳的參數,並且以實驗驗證其效果
由CFD-RC軟體所模擬之流速分佈發現,相對於三角柱與方柱,圓柱陣列結構周圍具有平順、流速慢的特性而且結構不具大角度的轉折,有利於流動的仿生粒子在其表面滾動,對於提升捕捉效率而言為最適當的選擇。
研究結果也發現,當晶片微結構直徑增加則仿生粒子與微柱理論接觸長度也隨之增加,即粒子被捕獲的機率增加,但是增加趨勢會漸漸減緩。以不同結構直徑的晶片實驗結果顯示,增加接觸長度的確可使仿生粒子的捕獲效率增加,但會使壓力隨之上升。使用300μm之微結構,其效率可較100μm提升3倍。以優化幾何參數之微圓柱結構(直徑300μm、間距50μm)參數進行低濃度實驗,在仿生粒子濃度為102~104 / ml時,其捕捉效率值約可達到40%~45%。本研究所歸納出陣列微結構幾何設計之原則,將有助於提高免疫捕捉微流體晶片的專一性細胞分離效率。
[1] Jocelyn Kaiser , “Cancer’s Circulation Problem , ” Science , Vol. 327 , pp. 1072-1074 , 2010.
[2] Yoav Soen , Daniel S. Chen , Daniel L. Kraft , Mark M. Davis , Patrick O.Brown , “Detection and Characterization of Cellular Immune Responses Using Peptide – MHCMicroarrays , ” PLoS Biology , Vol.1 , pp.429-438 , 2003
[3] Sunitha Nagrath , Lecia V. Sequist, Shyamala Maheswaran , Daphne W. Bell , Daniel Irimia , Lindsey Ulkus , Matthew R. Smith , Eunice L. Kwak , Subba Digumarthy, Alona Muzikansky , Paula Ryan , Ulysses J. Bails , Ronald G. Tompkins , Daniel A. Haber , and Mehmet Toner , “Isolation of Rare Circulating Tumour Cellsin Cancer Patients by Microchip Technology ,” Nature, Vol. 450, pp. 1235-1241, 2007.
[4] Andre A. Adams , Paul I. Okagbare , Juan Feng , Matuesz L. Hupert , Don Patterson , Jost Gottert , Robin L. McCarley , Dimitris Nikitopoulous , Michael C. Murphy , and Steven A. Soper ,“Highly Efficient Circulating Tumor Cell Isolation form Whole Blood and Laber-Free Enumeration Using Polymer-Based Microfluidics with an Integrated Conductivity Sensor ,” Journal of American Chemical Society , Vol. 130 , pp. 8633-8641, 2008.
[5] C. E. Orsello , D. A. Lauffenburger , and D. A. Hammer , “Molecular Properties in Cell Adhesion : a Physical and Engineering Perspective , ”Trends in Biotechnology , Vol.19 No.8 , pp.310-316 , 2001.
[6] Wesley C. Chang , Luke P. Lee , and Dorian Liepmann , “ Biomimetic Technique for Adhesion-Based Collection and Separation of Cells in a Microfluidic Channel , ” Lab on a Chip , Vol.5 , pp.64-73 , 2005.
[7] Z. L. Zhang , C. Crozatier , M. L. Berre , and Y. Chen,“In Situ Bio-fictionalization and Cell Adhesion in Microfluidic Device,”Microelectronic Engineering, Vol. 78 , pp. 556-562 , 2005.
[8] S. K. Murthy , A. Sin , R. G. Tompkins , and M. Toner, “Effect of Flow and Surface Conditions on Human Lymphocyte Isolation Using Microfluidic Chamber ,”Langmuir , Vol. 20 , pp.11649-11655 , 2004.
[9] Honest Makamba , Jin Ho Kim , Kwanseop Lim , Nokyoung Park ,and Jong Hoon Hahn , “Surface Modification of poly(dimethylsiloxane) Microchannels , ”Electrophoresis , Vol.24 , pp.3607-3619 , 2003.
[10] B. Y. Shew , Y. C. Cheng ,and Y. H. Tsai , “Monolithic SU-8 Micro-Interferometer for Biochemical Detections ,” ScienceDirect , Sensors and Actuators A Vol.141 , pp.299-306 , 2008.
[11] Z. Cheng , “Review Kinetics and Mechanics of Cell Adhesion , ”Journal of Biomechanics , Vol.33 , pp.23-33 , 2000.
[12] M. M. Dudek , R. P. Gandhiraman , C. Volcke , A. A. Cafolla , S. Daniels , and A. J. Killard , “Plasma Surface Modification of Cyclo-Olefin Polymers and Its Application to Lateral Flow Bioassays ,”Langmuir , Vol.25 , pp.11155-11161 , 2009.
[13] Mark D. Goldberg , Roger C. Lo , Miroslav Macka , and Frank A. Gomez , “ Development of Microfluidic Chips for Heterogeneous Receptor – Ligand Interaction Studies , ”Anal. Chem , Vol.81 , pp.5095-5098 , 2009.
[14] Nae Yoon Lee , and Bong Hyun Chung , “Novel Poly(dimethylsiloxane) Bonding Strategy via Room Temperature Chemical Gluing ,“ Langmuir , Vol.25 , pp.3861-3866 , 2009.
[15] Junichi Miwa , Yuji Suzuki , and Nobuhide Kasagi , “Adhesion-Based Cell Sorter with Antibody-Immobilized Functionalized-Parylene Surface “ , Proc IEEE Int. Conf. MEMS , Kobe (2007) , pp27-30 , 2007.
[16] Yoonhee Jang , Se Young Oh , Je-Kyun Park , “In Situ Electrochemical Enzyme Immunoassay on a Microchip with Surface-Functionalized Poly(dimethylsiloxane) Channel , Science Direct , Enzyme and Microbial Technology 39 , pp.1122-1127 , 2006.
[17] Markus Strigl , Doris A. Simon , Claudia M. Kacher , and Rudolf Merkel , “Force-Induced Dissociation of Single Protein A – IgG Bonds ,” Langmuir , Vol.15 , pp.7316-7324 ,1999.
[18] 朱夏志、許博淵、蘇育全,「以往復式介電泳提升專一性T細胞捕捉效率之研究」,國立清華大學工程與系統科學系碩士論文,2009
[19] 曾德昌、鍾震桂,「新型菱狀流道之微混合器設計與元件製作」,國立成功大學機械工程學系碩士論文,2005。
[20] 呂明泰、張憲彰、張冠諒 ,「可供有機與無機離子分離及檢測之導電度式毛細管電泳晶片之研發」,國立成功大學醫學工程研究所碩士論文,2005。
[21] 林家鴻、康世緯、吳靖宙,「電化學阻抗分析法於Enrofloxacin免疫探測器之研發」,國立中興大學生物產業機電研究所,2007
[22] 許哲維、魏哲弘,「電滲力應用於細胞 / 粒子收集效率之探討」,大同大學機械工程研究所碩士論文,2007
[23] 張珮郁、呂宗行,「流體元件內表面張力驅動之流體流動現象實驗探討」,國立成功大學航空太空工程學系碩士論文,2003