簡易檢索 / 詳目顯示

研究生: 蕭雯心
Hsiao, Wen-Hsin
論文名稱: 四重摺疊結構之核酸適體抑制登革熱病毒研究
DNA aptamer forms a G-quadruplex can neutralize all four serotypes of dengue viruses
指導教授: 程家維
Cheng, Jya-Wei
口試委員: 程家維
Cheng, Jya-Wei
陳金榜
CHEN, CHIN-PANG
蘇士哲
SU, SHIH-CHE
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 生物科技研究所
Biotechnology
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 86
中文關鍵詞: 登革熱病毒
外文關鍵詞: Dengue virus
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Flavivirus family includes Yellow Fever virus (YFV), Dengue virus (DENV), Japanese Encephalitis virus (JEV), Tick-borne Encephalitis (TBEV), and West Nile virus (WNV) that are are very important arthropod-born virus(mosquital or tick) associated with human diseases. Dengue fever is caused by dengue virus (DENV), which is primarily transmitted by Aedes albopictus and Aedes aegypt. There are four serotypes of virus, termed DENV-1, DENV-2, DENV3, DENV-4. World Health Organization estimated that over 50-100 million DENV infections occur globally each year. And there is still no specific drug and vaccine available for treatment and prevention. Previous studies suggested that envelope proteins are present on viral surface and are the dominant antigen, particularly domain III. Domain III plays the most important role in viral attachment and fusion with the target cell. Therefore, many studies have used domain III as a target for drug development. Our lab has used SELEX technology to create an aptamer (S15) forms a quadruplex structure and targets an unique epitope of four subtypes of DENV. In this study, we created a new aptamer (S15G3), which has similar structure as S15. Using Circular Dichroism and Fluorescence Spectrometer, we confirmed that S15G3 still have affinity to domain III. Furthermore, we identified the critical region for the binding to domain III by the deletion of nucleotides at the terminal and loop. Our results provided a shorter sequence (S15G3L123A) to make it easier for structure calculation, and it would have more potential to be a therapeutic drug than its parental aptamer.


    黃熱病毒家族包含黃熱病毒(YFV),登革熱病毒(DENV),日本腦炎病毒 (JEV),蜱媒腦炎病毒(TBEV),西尼羅病毒(WNV),都是非常重要的節肢動物傳 染病毒,黃熱病毒被視為造成人類致病率與死亡率的重要病原體。其中登革熱是 由登革熱病毒(DENV)所引起,藉由埃及斑紋以及白線斑蚊作為傳播媒介,依病 毒血清型不同可分為四型 : DENV-1, DENV-2, DENV-3, DENV-4。世界衛生組織 (The World Health Organization)估計每年約會出現五千萬到一億個登革熱(Dengue fever)感染病例,目前沒有特殊的藥物治療和疫苗可用。許多研究認為登革熱病 毒外層覆蓋的封套蛋白(Envelope protein)是一主要抗原,特別是封套蛋白中的第三 區域(domain III),在病毒辨識宿主受體與發生細胞融合過程中扮演重要的角色。 因此,許多研究利用domainIII作為標的物進行藥物的開發。我們實驗室利用了 SELEX技術篩選找到能與DENV-2 ED3親和性鍵結的核酸適體(S15),結構為鳥嘌 呤-四重摺疊結構(G-quadruplex structure),並且,發現S15與domainIII鍵結的區域在 四種不同血清型登革熱病毒中,有著高度相似性。於此次研究中,我們設計了一 個衍生自S15的新適體(S15G3),S15G3與S15同樣為鳥嘌呤-四重摺疊結構,也能親 和性鍵結DENV-2 ED3。接著,進而研究S15G3序列中的Terminal與loops分別對於 親和性鍵結的影響,目的是想盡可能縮短適體(aptamer)的序列長度,降低合成所 需成本。研究結果顯示,terminal會影響親合性鍵結,而loops則不會影響鍵結,所以,我們將S15G3序列中的loops都縮短為A(Adnine, 腺嘌呤),命名為: S15G3L123A,此較短序列的適體除了能有利於結構的分析之外,也更具潛力成 為抑制登革熱病毒感染的有效藥物。

    第一章、序論(introduction) 5 1.1 黃熱病毒簡介(Flavivirus) 5 1.2 登革熱(Dengue fever) 7 1.3 登革熱病毒結構特性 11 1.4 登革熱感染細胞機制 14 1.5 Class II fusion 16 1.6 SELEX (Systematic Evolution of Ligands by Expornential 17 enrichment)簡介 17 1.7 鳥嘌呤-四重摺疊結構(G-quadruplex structure) 19 第二章、研究目標(Aim) 21 第三章、材料與方法 22 3.1 實驗樣品-核糖核甘酸的製備 22 3.2 吸收係數測定 23 3.3 16% Native acrylamide gel 24 3.4 DENV-2 ED3蛋白質表現與純化 25 3.4.1 製備DENV-2 ED3蛋白質樣品 25 3.4.2 製備15N-labeled DENV-2 ED3蛋白質樣品 25 3.5 旋光儀(Circular Dichrosim) 27 3.5.1 旋光儀光譜的分析(circular dichroism spectrum analysis)原理 27 3.5.2 樣品製備 28 3.5.3 實驗步驟 28 3.6 螢光光譜儀(Fluorescence Spectrometer) 29 3.6.1 基本原理 29 3.6.2 樣品製備 31 3.6.3 實驗步驟 31 3.7 Nuclear magnetic resonance (NMR) Spectroscopy 33 3.7.1 NMR實驗樣品的製備 33 3.7.1.1 一維光譜與二維光譜︰S15G3L123A樣品製備 33 3.7.1.2 Epitope mapping : S15G3L123A樣品製備 34 3.7.2 S15G3L123A : NMR一維光譜實驗 35 3.7.3 Epitope mapping實驗 36 3.8 Plaque Reduction Neutralization Test (PRNT) 37 3.8.1 樣品製備 37 3.8.2 實驗步驟 37 第四節、實驗結果 39 4.1 S15G2與S15G3的結構 39 4.2 旋光儀(Circular Dichrosim)探討S15G3序列中的5’端核甘酸 (terminal neucleotides)和loops對鳥嘌呤-四重摺疊結構的影響 40 4.3 螢光光譜儀(Fluorescence Spectrometer)探討S15G3序列中5’端核甘酸(terminal neucleotides)和loops對親和性鍵結的影響 41 4.4 Epitope mapping 43 4.5 藉由PRNT實驗偵測S15G3L123A與5Ts抑制病毒的能力 44 4.6 S15G3L123A的結構分析 45 4.6.1 旋光儀(Circular Dichrosim) 45 4.6.2 NMR一維光譜分析 46 第五節、討論 47 圖表 49 Reference 82

    1. Kuhn, R.J., et al., Structure of Dengue Virus: Implications for Flavivirus Organization, Maturation, and Fusion. Cell, 2002. 108(5): p. 717-725.

    2. O'Leary, D., et al., Assessment of dengue risk in relief workers in Puerto Rico after Hurricane Georges, 1998. Am J Trop Med Hyg, 2002. 66(1): p. 35-39.

    3. Rigau-Perez, J., The early use of break-bone fever (Quebranta huesos, 1771) and dengue (1801) in Spanish. Am J Trop Med Hyg, 1998. 59(2): p. 272-274.

    4. Henchal, E.A. and J.R. Putnak, The dengue viruses. Clin. Microbiol. Rev., 1990. 3(4): p. 376-396.

    5. Halstead, S., Pathogenesis of dengue: challenges to molecular biology. Science, 1988. 239(4839): p. 476-481.

    6. Gubler, D.J., Dengue and Dengue Hemorrhagic Fever. Clin. Microbiol. Rev., 1998. 11(3): p. 480-496.

    7. Rodenhuis-Zybert, I., J. Wilschut, and J. Smit, Dengue virus life cycle: viral and host factors modulating infectivity. Cellular and Molecular Life Sciences, 2010. 67(16): p. 2773-2786.

    8. Chareonsirisuthigul, T., S. Kalayanarooj, and S. Ubol, Dengue virus (DENV) antibody-dependent enhancement of infection upregulates the production of anti-inflammatory cytokines, but suppresses anti-DENV free radical and pro-inflammatory cytokine production, in THP-1 cells. J Gen Virol, 2007. 88(2): p. 365-375.

    9. Lin, C.-F., et al., Endothelial Cell Apoptosis Induced by Antibodies Against Dengue Virus Nonstructural Protein 1 Via Production of Nitric Oxide. The Journal of Immunology, 2002. 169(2): p. 657-664.

    10. Clyde, K., J.L. Kyle, and E. Harris, Recent Advances in Deciphering Viral and Host Determinants of Dengue Virus Replication and Pathogenesis. J. Virol., 2006. 80(23): p. 11418-11431.

    11. Libraty, D.H., et al., High Circulating Levels of the Dengue Virus Nonstructural Protein NS1 Early in Dengue Illness Correlate with the Development of Dengue Hemorrhagic Fever. Journal of Infectious Diseases, 2002. 186(8): p. 1165-1168.

    12. Mackenzie, J.M., M.K. Jones, and P.R. Young, Immunolocalization of the Dengue Virus Nonstructural Glycoprotein NS1 Suggests a Role in Viral RNA Replication. Virology, 1996. 220(1): p. 232-240.

    13. Mukhopadhyay, S., R.J. Kuhn, and M.G. Rossmann, A structural perspective of the flavivirus life cycle. Nat Rev Micro, 2005. 3(1): p. 13-22.

    14. Yu, I.-M., et al., Structure of the Immature Dengue Virus at Low pH Primes Proteolytic Maturation. Science, 2008. 319(5871): p. 1834-1837.

    15. Guirakhoo, F., et al., Fusion activity of flaviviruses: comparison of mature and immature (prM-containing) tick-borne encephalitis virions. J Gen Virol, 1991. 72(6): p. 1323-1329.

    16. Anderson, R., Manipulation of cell surface macromolecules by flaviviruses, in Advances in Virus Research, F.A.M.A.J.S.T.J.C. Karl Maramorosch and P.M. Thomas, Editors. 2003, Academic Press. p. 229-274.

    17. Tassaneetrithep, B., et al., DC-SIGN (CD209) Mediates Dengue Virus Infection of Human Dendritic Cells. The Journal of Experimental Medicine, 2003. 197(7): p. 823-829.
    18. Lozach, P.-Y., et al., Dendritic Cell-specific Intercellular Adhesion Molecule 3-grabbing Non-integrin (DC-SIGN)-mediated Enhancement of Dengue Virus Infection Is Independent of DC-SIGN Internalization Signals. Journal of Biological Chemistry, 2005. 280(25): p. 23698-23708.

    19. Allison, S., et al., Oligomeric rearrangement of tick-borne encephalitis virus envelope proteins induced by an acidic pH. J. Virol., 1995. 69(2): p. 695-700.

    20. Schalich, J., et al., Recombinant subviral particles from tick-borne encephalitis virus are fusogenic and provide a model system for studying flavivirus envelope glycoprotein functions. J. Virol., 1996. 70(7): p. 4549-4557.

    21. Hung, S.-L., et al., Analysis of the Steps Involved in Dengue Virus Entry into Host Cells. Virology, 1999. 257(1): p. 156-167.

    22. Yu, I.-M., et al., Association of the pr Peptides with Dengue Virus at Acidic pH Blocks Membrane Fusion. J. Virol., 2009. 83(23): p. 12101-12107.

    23. Tuerk, C. and L. Gold, Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science, 1990. 249(4968): p. 505-510.

    24. Rujan, I.N., J.C. Meleney, and P.H. Bolton, Vertebrate telomere repeat DNAs favor external loop propeller quadruplex structures in the presence of high concentrations of potassium. Nucleic Acids Research. 33(6): p. 2022-2031.

    25. Michalowski, D., et al., Novel bimodular DNA aptamers with guanosine quadruplexes inhibit phylogenetically diverse HIV-1 reverse transcriptases. Nucleic Acids Research, 2008. 36(22): p. 7124-7135.

    26. Kankia, B.I. and L.A. Marky, Folding of the Thrombin Aptamer into a G-Quadruplex with Sr2+:  Stability, Heat, and Hydration. Journal of the American Chemical Society, 2001. 123(44): p. 10799-10804.

    27. Hazel, P., et al., Loop-Length-Dependent Folding of G-Quadruplexes. Journal of the American Chemical Society, 2004. 126(50): p. 16405-16415.

    28. Basu, S., et al., Direct Detection of Monovalent Metal Ion Binding to a DNA G-quartet by 205Tl NMR. Journal of the American Chemical Society, 2000. 122(13): p. 3240-3241.

    29. Sen, D. and W. Gilbert, Formation of parallel four-stranded complexes by guanine-rich motifs in DNA and its implications for meiosis. Nature, 1988. 334(6180): p. 364-366.

    30. Baker, B.M. and K.P. Murphy, Evaluation of linked protonation effects in protein binding reactions using isothermal titration calorimetry. Biophysical Journal, 1996. 71(4): p. 2049-2055.

    31. Mergny, J.-L., A.-T. Phan, and L. Lacroix, Following G-quartet formation by UV-spectroscopy. FEBS Letters, 1998. 435(1): p. 74-78.
    32. Lim, K.W., et al., Structure of the Human Telomere in K+ Solution: A Stable Basket-Type G-Quadruplex with Only Two G-Tetrad Layers. Journal of the American Chemical Society, 2009. 131(12): p. 4301-4309.

    33. Phan, A.T., Y.S. Modi, and D.J. Patel, Propeller-Type Parallel-Stranded G-Quadruplexes in the Human c-myc Promoter. Journal of the American Chemical Society, 2004. 126(28): p. 8710-8716.

    34. Seenisamy, J., et al., The Dynamic Character of the G-Quadruplex Element in the c-MYC Promoter and Modification by TMPyP4. Journal of the American Chemical Society, 2004. 126(28): p. 8702-8709.

    35. Balagurumoorthy, P., et al., Hairpin and parallel quartet structures for telomeric sequences. Nucleic Acids Research, 1992. 20(15): p. 4061-4067.

    36. Hsu, S.-T.D., et al., A G-Rich Sequence within the c-kit Oncogene Promoter Forms a Parallel G-Quadruplex Having Asymmetric G-Tetrad Dynamics. Journal of the American Chemical Society, 2009. 131(37): p. 13399-13409.

    37. Huang, K.-C., et al., Solution structure and neutralizing antibody binding studies of domain III of the dengue-2 virus envelope protein. Proteins: Structure, Function, and Bioinformatics, 2008. 70(3): p. 1116-1119.

    38. Feng, X.-Z., et al., Investigation of the interaction between acridine orange and bovine serum albumin. Talanta, 1998. 47(5): p. 1223-1229.

    39. Russell, P.K., et al., A Plaque Reduction Test for Dengue Virus Neutralizing Antibodies. The Journal of Immunology, 1967. 99(2): p. 285-290.

    40. Ponikova, S., M. Antalik, and T. Hianik, A circular dichroism study of the stability of guanine quadruplexes of thrombin DNA aptamers at presence of K+ and Na+ ions. Gen Physiol Biophys, 2008. 27(4): p. 271-7.

    41. Feigon, J., K.M. Koshlap, and F.W. Smith, [10]1H NMR spectroscopy of DNA triplexes and quadruplexes, in Methods in Enzymology, L.J. Thomas, Editor. 1995, Academic Press. p. 225-255.

    42. Fernando, H., et al., A Conserved Quadruplex Motif Located in a Transcription Activation Site of the Human c-kit Oncogene. Biochemistry, 2006. 45(25): p. 7854-7860.

    43. Phan, A.T., et al., An interlocked dimeric parallel-stranded DNA quadruplex: A potent inhibitor of HIV-1 integrase. Proceedings of the National Academy of Sciences of the United States of America, 2005. 102(3): p. 634-639.

    44. Macaya, R.F., et al., Thrombin-binding DNA aptamer forms a unimolecular quadruplex structure in solution. Proceedings of the National Academy of Sciences, 1993. 90(8): p. 3745-3749.

    45. Mashima, T., et al., Unique quadruplex structure and interaction of an RNA aptamer against bovine prion protein. Nucleic Acids Research, 2009. 37(18): p. 6249-6258.

    46. Lane, A.N., et al., Stability and kinetics of G-quadruplex structures. Nucleic Acids Research, 2008. 36(17): p. 5482-5515.

    47. Hazel, P., et al., Loop-length-dependent folding of G-quadruplexes. J Am Chem Soc, 2004. 126(50): p. 16405-15.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE