簡易檢索 / 詳目顯示

研究生: 詹凡丹
Jan, Fan-Dan
論文名稱: 腫瘤相關醣體疫苗合成與免疫研究
Synthese and Immunogenicities of Tumor-Associated Carbohydrate Vaccines
指導教授: 林俊成
Lin, Chun-Cheng
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2009
畢業學年度: 98
語文別: 中文
論文頁數: 256
中文關鍵詞: 疫苗
外文關鍵詞: vaccines
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 腫瘤相關醣類抗原(tumor-associated carbohydrate antigen,TACAs)
    通常大量存在於腫瘤細胞表面,而這些醣類抗原相繼被選擇用來開發
    抗癌疫苗。由於醣類抗原的抗原性極低,因此在傳統疫苗設計上利用
    聯接物將醣類抗原結合到載體KLH 增加其免疫抗原性,誘發免疫反
    應產生IgG 抗體。然而,此一策略呈現幾項缺點,像是結合效率低、
    結合反應再現性不佳、或是以此抗原所刺激的抗體大都為載體而非醣
    類分子等。因此,本論文將著重於發展新的醣體疫苗策略來改善傳統
    載體的缺點及提供新的疫苗設計策略。
    本論文研究分為兩個部分,第一部分為合成GM3、Tn、與trimeric
    Tn 醣體抗原並成功利用MHSu 連接物結合到具有以受體為媒介之抗
    原攝入與高效呈現抗原的特性之poly C 蛋白質載體,並進行免疫實
    驗分析。結果顯示此一疫苗策略不但可簡化結合反應而增加結合效率
    並可有效活化B 細胞。第二部分為設計及合成以PAMAM 為核中心
    結構之甘露醣載體之醣體抗原系統。目前已成功合成出以甘露醣為載
    體之醣體抗原化合物153、156 與159 並進行動物免疫實驗,證實以
    PAMAM 甘露醣為主之醣體抗原可有效活化B、T 細胞,提供新的醣
    體疫苗設計策略。


    目錄 中文摘要 …………………………………………………………. I 英文摘要 …………………………………………………………. II 簡寫表 …………………………………………………………. III 目錄 …………………………………………………………. V 圖目錄 …………………………………………………………. VII 表目錄 …………………………………………………………. X 附圖目錄 …………………………………………………………. XIII 第一章、緒論……………………………………………………… 1 1.1 前言…………………………………………………………. 1 1.2 免疫系統簡介………………………………………………. 2 1.3 抗原…………………………………………………………. 5 1.4 抗體…………………………………………………………. 6 1.5 醣類抗原……………………………………………………. 6 1.6 醣類疫苗設計策略…………………………………………. 10 1.7 醣類疫苗載體(carrier protein)……………………………... 13 1.7.1 牛血清白蛋白(Bovine serum albumin,BSA)………... 13 1.7.2 Lipopeptide Pam3Cys………………………………… 15 VI 1.7.3 破傷風類毒素(Tetanus toxoid,TT)…………………… 16 1.7.4 鑰孔血藍蛋白(Keyhole limpet hemocyanin,KLH)… 17 1.7.5 Three-component vaccine……………………………… 20 1.7.6 離胺酸樹枝狀聚合物(Lysine dendrimer)……………... 21 1.7.7 多醣體(Polysaccharides)………………………………. 22 1.8 DNA 與藥物載體………………………………………… 23 1.8.1 新穎蛋白質載體PEIa-(polycysteine)7……………….... 24 1.8.2 甘露醣樹枝狀聚合物(Mannosylated dendrimer)…… 25 1.8.3 聚甘露醣(Mannan).......................................................... 25 第二章、腫瘤相關醣體抗原GM3 合成與免疫研究………………. 27 壹、緒論.............................................................................................. 27 貳、腫瘤相關醣體抗原GM3 合成與免疫研究文獻回顧................ 27 2.1 醣體抗原GM3 合成文獻回顧................................................ 27 2.2 酵素合成方法......................................................................... 28 2.3 化學合成方法......................................................................... 28 2.3.1 溶劑效應.......................................................................... 29 2.3.2 予體離去基與C-5 保護基............................................... 30 2.4 醣體抗原GM3 免疫研究文獻回顧........................................ 36 叁、研究構想與逆合成分析路徑...................................................... 40 VII 肆、結果與討論.................................................................................. 42 4.1 醣體抗原GM3 之化學合成.................................................... 42 4.1.1 唾液酸予體40 合成......................................................... 42 4.1.2 乳醣受體39 合成............................................................. 43 4.2 醣體抗原GM3 之酵素合成.................................................... 47 4.3 醣體抗原與蛋白質載體結合................................................. 48 4.4 醣體結合反應效率分析......................................................... 50 4.5 動物免疫實驗與抗體分析..................................................... 52 伍、結論.............................................................................................. 54 第三章、腫瘤相關醣體抗原Tn 與Trimeric Tn 合成與免疫研究. 55 壹、緒論.............................................................................................. 56 貳、腫瘤相關醣體抗原Tn 與Trimeric Tn 免疫研究文獻回顧..... 55 叁、研究構想與逆合成分析路徑...................................................... 61 肆、結果與討論.................................................................................. 64 4.1 醣體抗原Tn 合成................................................................... 64 4.1.1 醣受體81 之建構............................................................. 64 4.1.2 醣體抗原Tn 79 之建構................................................... 65 4.2 醣體抗原Trimeric Tn cluster 74 合成................................... 68 VIII 4.3 醣體抗原與蛋白質載體結合................................................. 69 4.4 動物免疫實驗與抗體分析..................................................... 71 伍、結論.............................................................................................. 73 第四章、甘露醣樹枝狀醣體抗原合成與免疫研究.......................... 74 壹、緒論.............................................................................................. 74 1.1 樹突狀細胞(Dendritic cells, DC)........................................... 74 1.2 樹突狀細胞呈現抗原機制..................................................... 75 1.3 甘露醣受體(Mannose receptor, MR)..................................... 77 貳、甘露醣樹枝狀醣體合成與相關研究文獻回顧.......................... 78 2.1 甘露醣樹枝狀醣體之合成文獻回顧..................................... 78 2.2 甘露醣樹枝狀醣體抗原相關研究文獻回顧......................... 82 叁、 研究構想與逆合成分析路徑.................................................. 85 肆、 結果與討論................................................................................ 87 4.1 甘露醣離胺酸樹枝狀醣體結合抗原之合成......................... 87 4.1.1 逆合成分析...................................................................... 87 4.1.2 甘露醣體120 之合成....................................................... 89 4.1.3 八價甘露醣離胺酸樹狀體分子之合成.......................... 89 4.2 甘露醣PAMAM 樹枝狀醣體結合抗原之合成..................... 100 IX 4.2.1 逆合成分析....................................................................... 101 4.2.2 甘露醣體140 之合成....................................................... 102 4.2.3 八價PAMAM 樹狀體分子之合成................................... 103 4.2.4 四價甘露醣樹狀體與Tn 及Trimeric Tn 抗原分子之 合成................................................................................... 106 4.2.5 八價甘露醣樹狀體Tn 抗原分子之合成......................... 113 4.3 四價甘露醣樹狀體與四價樹狀體醣體抗原分子之合成...... 115 4.3.1 四價樹狀體Tn 與Trimeric Tn 抗原分子之合成............ 116 4.3.2 雙官能基樹狀體化合物170 合成.................................... 119 4.4 動物免疫實驗.......................................................................... 122 伍、結論............................................................................................... 122 實驗部分 (Experimental Section).................................................... 125 參考文獻(References)....................................................................... 169 附錄(Appendix)................................................................................... 184

    1. Jones, C. Vaccines based on the cell surface carbohydrates of pathogenic bacteria.
    An. Acad. Bras. Cienc. 2005, 77, 293-324.
    2. Meezan, E.; Wu, H. C.; Black, P. H.; Robbins, P. W. Comparative studies on
    carbohydrate-containing membrane components of normal and virus-transformed
    mouse fibroblasts. Separation of glycoproteins and glycopeptides by sephadex
    chromatography. Biochemistry 1969, 8, 2518–2524.
    3. Turner, G. A. N-glycosylation of serum-proteins in disease and its investigation
    using lectins. Clin. Chim. Acta. 1992, 208, 149–171.
    4. Zhang, S.; Zhang, H. S.; Cordon-Cardo, C.; Reuter, V. E.; Singhal, A. K.; Lloyd,
    K. O.; Livingston, P. O. Selection of tumor antigens as targets for immune attack
    using immunohistochemistry: II. Blood group–related antigens. Int. J. Cancer
    1997, 73, 50-56.
    5. Zhang, S.; Cordon-Cardo, C.; Zhang, H. S.; Reuter, V. E.; Adluri, S.; Hamilton,
    W. B.; Lloyd, K. O.; Livingston, P. O. Selection of tumor antigens as targets for
    immune attack using immunohistochemistry: I. Focus on gangliosides. Int. J.
    Cancer 1997, 73, 42-49.
    6. Goldsby, R. A.; Kindt, T. J.; Osborne, B. A.; Kuby, J. Immunology; 5th ed. New
    York; 2005, 1-78.
    7. Danishefsky, S. J.; Allen, J. R. From the laboratory to the clinic: A retrospective
    on fully synthetic carbohydrate based anticancer vaccines. Angew. Chem. Intl.
    Eng. 2000, 39, 836–863.
    8. Verez-Bencomo, V.; et al. A synthetic conjugate polysaccharide vaccine against
    Haemophilus influenzae Type b. Science 2004, 305, 522-525.
    9. Kaltgrad, E.; Gupta, S. S.; Punna, S.; Huang, C.-Y.; Chang, A.; Wong, C.-H.;
    170
    Finn, M. G.; Blixt, O. Anti-carbohydrate antibodies elicited by polyvalent
    display on a viral scaffold. ChemBioChem 2007, 8, 1455-1462.
    10. Wang, Q.; Ekanayaka, S. A.; Wu, J.; Zhang, J.; Guo, Z. Synthetic and
    immunological studies of 5′-N-phenylacetyl STn to develop carbohydrate-based
    cancer vaccines and to explore the impacts of linkage between carbohydrate
    antigens and carrier proteins. Bioconjugate Chem. 2008, 19, 2060-2067.
    11. Zhu, J.; Wan, Q.; Ragupathi, G.; Constantine, G. M.; Livingston, P. O.;
    Danishefsky, S. J. Biologics through chemistry: total synthesis of a proposed
    dual-acting vaccine targeting ovarian cancer by orchestration of oligosaccharide
    and polypeptide domains. J. Am. Chem. Soc. 2009, 131, 4151-4158.
    12. Ni, J.; Song, H.; Wang, Y.; Stamatos, N. M.; Wang, L. X. Toward a
    carbohydrate-based HIV-1 vaccine: synthesis and immunological studies of
    oligomannose-containing glycoconjugates. Bioconjugate Chem. 2006, 17,
    493–500.
    13. Buskas, T.; Li, Y. H.; Boons, G.-J. The immunogenicity of the tumor-associated
    antigen Lewisy may be suppressed by a bifunctional cross-linker required for
    coupling to a carrier protein. Chem. Eur. J. 2004, 10, 3517–3524.
    14. Hakomori, S.; Zhang, Y. Glycosphingolipid antigens and cancer therapy. Chem.
    Biol. 1997, 3, 97-104.
    15. Toyokuni, T.; Singhal, A. K. Synthetic carbohydrate vaccines based on
    tumor-associated antigens. Chem. Soc. Rev. 1995, 231-242.
    16. Springer, G. F. Immunoreactive T and Tn epitopes in cancer diagnosis, prognosis,
    and immunotherapy. J. Mol. Med. 1997, 75, 594–602.
    17. Dube, D. H.; Bertozzi, C. R. Glycans in cancer and inflammation. potential for
    therapeutics and diagnostics. Nat. Rev. Drug. Discov. 2005, 4, 477–488.
    18. Slovin, S. F.; Keding, S. J.; Ragupathi, G. Carbohydrate vaccines as
    171
    immunotherapy for cancer. Immunol. Cell. Biol. 2005, 83, 418–428.
    19. Ouerfelli, O.; Warren, J. D.; Wilson, R. M.; Danishefsky, S. J. Synthetic
    carbohydrate based antitumor vaccines: challenges and opportunities. Expert.
    Rev. Vaccines 2005, 4, 677–685.
    20. Danishefsky, S. J.; Behar, V.; Raolph, J. T.; Lloyd, K. O. Application of the
    assembly method to the concise synthesis of neoglycoconjugates of Ley and Leb
    blood group determinants and of H-Type I and H-Type II oligosaccharides. J.
    Am. Chem. Soc. 1995, 117, 5701-5711.
    21. Bundle, D. R.; Rich, J. R.; Jacques, S.; Yu, H. N.; Nitz, M.; Ling, C. C.
    Thiooligosaccharide conjugate vaccines evoke antibodied specific for native
    antigen. Angew. Chem. Int. Ed. 2005, 44, 7725–7729.
    22. Buskas, T.; Ingale, S.; Boons, G.-J. Towards a fully synthetic carbohydratebased
    anticancer vaccine: synthesis and immunological evaluation of a lapidated
    glycopeptide containing the tumor-associated Tn antigen. Angew. Chem. Int. Ed.
    2005, 44, 5985–5988.
    23. Toyokuni, T.; Dean, B.; Cai, S.; Boivin, D.; Hakomori, S.; Singhal, A. K.
    Synthetic vaccines: synthesis of a dimeric Tn antigen-lipopeptide conjugate that
    elicits immune responses against Tn-expressing glycoproteins. J. Am. Chem. Soc.
    1994, 116, 395-396.
    24. Slovin, S. F.; Ragupathi, G.; Musselli, C.; Olkiewicz. K.; Verbel, D.; Kuduk, S.
    D.; Schwarz, J.; Sames, D.; Danishefsky, S. Livingston, P. O.; Scher, H. I. Fully
    synthetic carbohydrate-based vaccines in biochemically relapsed prostate cancer:
    clinical trial results with α-N-acetylgalactosamine-O-serine/threonine conjugate
    vaccine. J. Clinical. Oncology. 2003, 21, 4292-4298.
    25. Schneerson, R.; Barrera, O.; Sutton, A.; Robbins, J. B. Preparation,
    characterization, and immunogenicity of Haemophilus influenzae type b
    172
    polysaccharide-protein conjugates. J. Exp. Med. 1980, 152, 361-376.
    26. Rich, J. R.; Wakarchuk, W. W.; Bundle, D. R.; Chemical and chemoenzymatic
    synthesis of S-linked ganglioside analogues and their protein conjugates for use
    as immunogens. Chem. Eur. J. 2006, 12, 845-858.
    27. Jacques, S.; Rich, J. R.; Ling, C. C.; Bundle, D. R. Chemoenzymatic synthesis of
    GM3 and GM2 gangliosides contained a truncated ceramide functionalized for
    glycoconjugatd synthesis and solid phase applications. Org. Biomol. Chem. 2006,
    4, 142-154.
    28. Ragupathi, G.; Park, T. K.; Zhang, S.; Kim, I. J.; Graber, L.; Adluri, S.; Lloyd, K.
    O.; Danishefsky, S. J.; Livingston, P. O. Immunization of mice with a fully
    synthetic Globo H antigen results in antibodies against human cancer cells: a
    combined chemical-immunological approach to the fashioning of an anticancer
    vaccines. Angew. Chem. Int. Ed. 1997, 36, 125-128.
    29. Holmberg, L.; Sandmaier, B. Vaccination with Theratope (STn-KLH) as
    treatment for breast cancer. Espert Rev. Vaccines 2004, 3, 655-663.
    30. Zhu, J.; Wan, Q.; Lee, D.; Yang, G.; Spassova, M. K.; Ouerfelli, O.; Ragupathi,
    G.; Damani, P.; Livingston, P. O.; Danishefsky, S. J. From synthesis to biologics:
    preclinical data on a chemistry derived anticancer vaccine. J. Am. Chem. Soc.
    2009, 131, 9298-9303.
    31. Wan, Q.; Chen, J.; Chen, G.; Danishefsky, S. J. A potentially valuable advance
    in the synthesis of carbohydrate-based anticancer vaccines through extended
    cycloaddition chemistry. J. Org. Chem. 2006, 71, 8244-8249.
    32. Ingale, S.; Wolfert, M. A.; Gaekwad, J.; Buskas, T.; Boons, G.-J. Robust
    immune responsed elicited by a fully synthetic three-component vaccine. Nat.
    Chem. Biol. 2007, 3, 663–667.
    33. Moreno, C. A.; Rodriguez, R.; Oliveira, G. A.; Ferreira, V.; Nussenzweig, R. S.;
    173
    Moya Castro, Z. R.; Calvo-Calle, J. M.; Nardin, E. Preclinical evaluation of a
    synthetic Plasmodium falciparum MAP malaria vaccine in Aotus monkeys and
    mice. Vaccine, 1999, 18, 89-99.
    34. De Silva, R. A.; Wang, Q. Chidley, T.; Appulage, D. K.; Andreana, P. A.
    Immunological response from an entirely carbohydrate antigen : design of
    synthetic vaccines based on Tn-PS A1 conjugates. J. Am. Chem. Soc. 2009, 131,
    9622-9623.
    35. Donnelly, J. J.; Jeffrey, B. U.; Linda, A. H.; Arthur, F.; Xiao-Pin, S.; Karen, R.
    L.; John, W. S.; Allen, I. O.; Douglas, M.; Donna, M.; Margaret, A. L. Targeted
    delivery of peptide epitopes to class I major histocompatibility molecules by a
    modified Pseudomonas exotoxin Proc. Natl. Acad. Sci. USA 1993, 90,
    3530-3534.
    36. Kreitman, R. J. Immunotoxins in cancer therapy. Curr. Opin. Immunol. 1999, 11,
    570-578
    37. Foss, F. M.; Saleh, M. N.; Krueger, J. G.; Nichols, J. C.; Murphy, J. R.
    Diphtheria toxin fusion proteins. In Clinical Applications of Immunotoxins.
    Edited by Frankel AE. Berlin: Springer-Verlag: 1998, 63-81.
    38. Pai, L. H.; Wittes, R.; Setser, A.; Willingham, M. C.; Pastan, I. Treatment of
    advanced solid tumors with immunotoxin LMB-1: an antibody linked to
    Pseudomonas exotoxin. Nat. Med. 1996, 2, 350-353.
    39. Livingston, O.; Crimi, C.; Newman, M.; Higashimoto, Y.; Appella, E.; Sidney, J.;
    Sette, A. A rational strategy to design multiepitope immunogens based on
    multiple Th lymphocyte epitopes. J. Immunol. 2002, 168, 5499–5506.
    40. Engering, A, J.; Cella, M.; Fluitsma, D.; Brockhaus, M.; Hoefsmit, E. C.;
    Lanzavecchia, A.; Pieters, J. The mannose receptor functions as a high capacity
    and broad specificity antigen receptor in human dendritic cells. Eur. J. Immunol.
    174
    1997, 27, 2417-2425.
    41. Sheng, K.-C.; Kalkanidis, M.; Pouniotis, D. S.; Esparon, S.; Tang, C. K.;
    Apostolopoulos, V.; Pietersz, G. A. Delivery of antigen using a novel
    mannosylated dendrimer potentiates immunogenicity in vitro and in vivo. Eur. J.
    Immunol. 2008, 38, 424-436.
    42. Okawa, Y.; Howard, C. R.; Steward, M. W. Production of anti-peptide antibody
    in mice following immunization with peptides conjugated to mannan. J. Immunol.
    Meth. 1992, 142, 127-131.
    43. Pietersz, G. A.; Li, W.; Popovski, V.; Caruana, J. A.; Apostolopoulos, V.;
    McKenzie, I. F. Parameters for using mannan-MUC1 fusion protein to induce
    cellular immunity. Cancer Immunol. Immunother. 1998, 45, 321-326.
    44. Pietersz, G. A.; Loveland, B. E.; Sandrin, M. S.; McKenzie, I. F.
    Oxidative/reductive conjugation of mannan to antigen selects for T1 or T2
    immune responses. Proc. Natl. Acad .Sci. U. S. A. 1995, 92, 10128-10132.
    45. Lees, C. J.; Apostolopoulos, V.; McKenzie, I. F. Cytokine production from
    murine CD4 and CD8 cells after mannann-MUC1 immunization. J. Interferon
    Cytokine Res. 1999, 19, 1373-1379.
    46. Apostolopoulos, V.; Pietersz, G. A.; Gordon, S.; Martinez-Pomares, L.;
    McKenzie, I. F. Aldehyde-mannan antigen complexes target the MHC class I
    antigen-presentation pathway. Eur. J. Immunol. 2000, 30, 1714-1723.
    47. Apostolopoulos, V.; Pietersz, G. A.; Tsibanis, A.; Tsikkinis, A.; Drakaki, H.;
    Loveland, B. E.; Piddlesden, S. J. et al. Pilot phase III immunotherapy study in
    early-stage breast cancer patients using oxidized mannan-MUC1. Breast Cancer
    Res. 2006, 8, R27.
    48. Bitton, R. J.; Guthmann, M. D.; Babri, M. R.; Carnero, A. J. L.; Alonso, D. F.;
    Fainboim, L.; Gomez, D. E. Cancer vaccines: An update with special focus on
    175
    ganglioside antigens. Oncol. Rep. 2002, 9, 267-276.
    49. Livingston, P. O. Approaches to augmenting the immunogenicity of melanoma
    gangliosides from the whole melanoma cells to ganglioside-KLH conjugate
    vaccines. Immunol. Rev. 1995, 145, 147-156.
    50. McCool, T. L.; Harding, C. V.; Greenspan, N. S.; Schreiber, J. R. B- and T-Cell
    immune responses to pneumococcal conjugate vaccines: divergence between
    carrier- and polysaccharide-specific immunogenicity. Infect. Immun. 1999, 67,
    4862-4869.
    51. Alexander, J.; Del Guercio, M.-F.; Maewal, A.; Qiao, L.; Fikes, J.; Chesnut, R.
    W.; Paulson, J.; Bundle, D. R.; DeFrees, S.; Sette, A. Linear PADRE T helper
    epitope and carbohydrate B cell epitope conjugates induce specific high titer IgG
    antibody responses. J. Immunol. 2000, 164, 1625–1633.
    52. Lo-Man, R.; Vichier-Guerre, S.; Bay, S.; De'riaud, E.; Cantacuzéne, D.; Leclerc,
    C. Anti-tumor immunity provided by a synthetic multiple antigenic glycopeptide
    displaying a tri-Tn glycotope. J. Immunol. 2001, 166, 2849–2854.
    53. Jiang, Z. H.; Koganty, R. R. Synthetic vaccines: the role of adjuvants in immune
    targeting. Curr. Med. Chem. 2003, 10, 1423–1439.
    54. Jackson, D. C.; Lau, Y. F.; Le T.; Suhrbier, A.; Deliyannis, G.; Cheers, C.; Smith,
    C.; Zeng, W.; Brown, L. E. A totally synthetic vaccine of generic structure that
    targets Toll-like receptor 2 on dendritic cells and promotes antibody or cytotoxic
    T cell responses. Proc. Natl. Acad. Sci. USA 2004, 101, 15440–15445.
    55. Lo-Man, R.; Vichier-Guerre, S.; Perraut, R.; Dériaud, E.; Huteau, V.;
    BenMahamed, L.; Diop, O. M.; Livingston, P. O.; Bay, S.; Leclerc, C. A fully
    synthetic therapeutic vaccine candidate targeting carcinomaassociated Tn
    carbohydrate antigen induces tumor-specific antibodies in nonhuman primates.
    Cancer Res. 2004, 64, 4987–4994
    176
    56. Krikorian, D.; Panou-Pomonis, E.; Voitharou, C.; Sakarellos, C.;
    Sakarellos-Daitsiotis, M. A peptide carrier with a built-in vaccine adjuvant:
    construction of immunogenic conjugates. Bioconjug. Chem. 2005, 16, 812–819.
    57. Pan, Y.; Chefalo, P.; Nagy, N.; Harding, C.; Guo, Z. Synthesis and
    immunological properties of N-modified GM3 antigens as therapeutic cancer
    vaccines. J. Med. Chem. 2005, 48, 875–883.
    58. Benito, J. M.; Gomez-Garcia, M; Mellet, C. O.; Baussanne, I.; Defaye, J.; Garcia
    Fernandez, J. M. Optimizing saccharide-directed molecular delivery to biological
    receptors: design, synthesis, and biological evaluation of
    glycodendrimer-cyclodextrin conjugates. J. Am. Chem. Soc. 2004, 126,
    10355-10363.
    59. Galonic, D. P.; Gin, D. Y. Chemical glycosylation in the synthesis of
    glycoconjugate antitumour vaccines. Nature, 2007, 446, 1000-1007.
    60. Earle, M. A.; Manku, S.; Hultin, P. G.; Li, H.; Palcic, M. M. Chemoenzymatic
    synthesis of a trimeric ganglioside GM3 analogue. Carbohydr. Res. 1997, 301,
    1-4.
    61. Jacques, S.; Rich, J. R.; Ling, C. C.; Bundle, D. R. Chemoenzymatic synthesis of
    GM3 and GM2 ganglioside containing a truncated ceramide functionalized for
    glycoconjugated synthesis and solid phase applications. Org. Biomol. Chem.
    2006, 4, 142-154.
    62. Smith, H.; Parson, N. J.; Cole, J. A. Sialylation of neisserial lipopolysaccharide:
    a major influence on pathogenicity. Microb. Pathog. 1995, 19, 365-377.
    63. Izumi, M.; Shen, G.-J.; Wacowich-Sgarbi, S.; Nakatani, T.; Plettenburg, O.;
    Wong, C. -H. Microbial glycosyltransferases for carbohydrate synthesis: α-2,
    3-sialyltransferase from Neisseria gonorrheae. J. Am. Chem. Soc. 2001, 123,
    10909-10918.
    177
    64. Okamoto, K.; Goto, T. Glycosidation of sialic acid. Tetrahedron 1990, 46,
    5835-5857.
    65. DeNinno, M. P. The synthesis and glycosidation of N-acetylneuraminic acid.
    Synthesis 1991, 583-593.
    66. Ito, Y.; Gaudino, J. J.; Paulson, J. C. Synthesis of bioactive sialosides. Pure.
    Appl. Chem. 1993, 65, 753-768.
    67. Boons, G.-J.; Demchenko, A. V. Recent advances in O-sialyaltion. Chem. Rev.
    2000, 100, 4539-4565.
    68. Lin, C.-H.; Lin, C.-C. The Molecular Immunology of Complex Carbohydrates 2,
    Kluwer-Plenum: New York, 2001.
    69. Halcomb, R. L.; Cappell, M. D. Recent developments in technology for
    glycosylation with sialic acid. J. Carbohydr. Chem. 2002, 21, 723-768.
    70. kanie, O.; Kiso, M.; Hasegawa, A. Glycosylation using methylthioglycosides of
    N-acetylneuraminic acid and dimethyl(methylthio)sulfonium triflate. J.
    Carbohydr. Chem. 1988, 7, 501-506.
    71. Hasegawa, A.; Ohki, H.; Nagahama, T.; Ishida, H.; Kiso, M. A facile, large-scale
    preparation of the methyl 2-thio-glycoside of N-acetylneuraminic acid, and its
    usefulness for the α-stereoselective synthesis of sialoglycosides. Carbohydr. Res.
    1991, 212, 277-281.
    72. Schmidt, R. R.; Behrendt, M.; Toepfer, A. Nitriles as solvents in glycosylation
    reactions: highly selective β-glycoside synthesis. Synlett 1990, 694-696.
    73. Vankar, Y. D.; Vankar, P. S.; Behrendr, M.; Schmidt, R. R. Synthesis of
    β-O-glycosides using enol ether and imidate derived leaving groups. emphasis on
    the use of nitriles as a solvent. Tetrahedron 1991, 47, 9985-9992.
    74. Schmidt, R. R.; Rücker, E. Stereoselective glycosidations of uronic acids.
    Tetrahedron Lett. 1980, 21, 1421-1424.
    178
    75. Birberg, W.; Lönn, H. Glycosylation with sialic acid at HO-3 of three different
    O-protected D-galactosides in acetonitrile/dichloromethane at low temperature.
    Tetrahedron Lett. 1991, 32, 7457-7458.
    76. Murase, T.; Ishida, H.; Kiso, M.; Hasegawa, A. A facile regio- and
    stereo-selective synthesis of α-glycosides of N-acetylneuraminic acid. Carbohydr.
    Res. 1988, 184, c1-c4.
    77. Murase, T.; Ishida, H.; Kiso, M.; Hasegawa, A. A facile regio- and stereoselective
    synthesis of ganglioside GM3. Carbohydr. Res. 1989, 188, 71-80.
    78. Hasegawa, A.; Ohki, H.; Nagahama, T.; Ishida, H.; Kiso, M. A facile, large-scale
    preparation of the methyl 2-thioglycoside of N-acetyneuraminic acid, and its
    usefulness for the α-stereoselective synthesis of sialoglycosides. Carbohydr. Res.
    1991, 212, 277-281.
    79. De Meo, C.; Demchenko, A. V.; Boons, G.-J. A stereoselective approach for the
    synthesis of α-sialosides. J. Org. Chem. 2001, 66, 5490-5497.
    80. Cheshev, P. E.; Khatuntseva, E. A.; Tsvetkov, Y. E.; Shashkov, A. S.; Nifantiev,
    A. E. Synthesis of aminoethyl glycosides of the ganglioside GM1 and
    asialo-GM1 oligosaccharide chains. Russ. J. Bioorg. Chem. 2004, 30, 68-79.
    81. Pan, Y.; Chefalo, P.; Nagy, N.; Harding, C.; Guo, Z. Synthesis and
    immunological properties of N-modified GM3 antigens as therapeutic cancer
    vaccines. J. Med. Chem. 2005, 48, 875–883.
    82. Allen, J. R.; Danishefsky, S. J.; New applications of the n-pentyl glycoside
    method in the synthesis and immunoconjugation of fucosyl GM1: a highly
    tumor-specific antigen associated with small cell lung carcinoma. J. Am. Chem.
    Soc. 1999, 121, 10875-10882.
    83. Sim, M. M.; Kondo, H.; Wong, C-H. Synthesis and use of glycosyl phosphates:
    An effection route to glycosyl phosphate, sugar nucleotides, and glycosides. J.
    179
    Am. Chem. Soc. 1993, 115, 2260-2267.
    84. Hanashima, S.; Castagner, B.; Esposito, D.; Nokami, T.; Seeberger, P. H.
    Synthesis of a sialic acid α(2-3) galactose building block and its use in a linear
    synthesis of Sialyl Lewis X. Org. Lett. 2007, 9, 1777-1779.
    85. Liu, Y.; Ruan, X.; Li, X.; Li, Y. Efficient synthesis of a sialic acid α(2-3)
    galactose building block and its application to the synthesis of ganglioside GM3.
    J. Org. Chem. 2008, 73, 4287-4290.
    86. Khatunstseva, E. A.; Yudina, O. N.; Tsvetkov, Y. E.; Grachev, A. A.;
    Stepanenko, R. N.; Vlasenko, R. Y.; Lvov, V. L.; Nifantiev, N. E. Synthesis of
    3-aminopropyl β-glycoside of sialyl-3’-lactose and derived neoglycoconjugates
    as a tumor vaccine prototype and artificial antigens for the control of immune
    response. Russ. Chem. Bull. Int. Ed. 2006, 255, 2095-2102.
    87. Helling, F.; Shang, A.; Calves, M.; Zhang, S.; Ren, S.; Yu, R. K.; Oettgen, H. F.;
    Livingston, P. O. GD3 vaccines for melanoma: superior immunogenicity of
    keyhole limpet hemocyanin conjugate vaccines. Cancer Res. 1994, 54, 197-203
    88. Reichel, F.; Ashton, P. R.; Boons, G.-J. Synthetic carbohydrate-based vaccines:
    synthesis of an L-glycero-D-manno-heptose antigen-T-epitope-lipopetide
    conjugate. Chem. Commun. 1997, 21, 2087–2088.
    89. Dziadek, S.; Kowalczyk, D.; Kunz, H. Synthetic vaccines consisting of tumor
    associated MUC1 glycopeptide antigens and bovine serum albumin. Angew.
    Chem. Int. Ed. 2005, 44, 7624–7630.
    90. Kudryashov, V.; Glunz, P. W.; Williams, L. J.; Hintermann, S.; Danishefsky, S.
    J.; Lloyd, K. O. Toward optimized carbohydrate-based anticancer vaccines:
    epitope clustering, carrier structure, and adjuvant all influence antibody
    responses Lewisy conjugates in mice. Proc. Natl. Acad. Sci. USA 2001, 98,
    3264–3269.
    180
    91. McCool, T. L.; Harding, C. V.; Greenspan, N. S.; Schreiber, J. R. B- and T-Cell
    immune responses to pneumococcal conjugate vaccines: divergence between
    carrier- and polysaccharide-specific immunogenicity. Infect. Immun. 1999, 67,
    4862-4869.
    92. .Alexander, J.; Del Guercio, M.-F.; Maewal, A.; Qiao, L.; Fikes, J.; Chesnut, R.
    W.; Paulson, J.; Bundle, D. R.; DeFrees, S.; Sette, A. Linear PADRE T helper
    epitope and carbohydrate B cell epitope conjugates induce specific high titer IgG
    antibody responses. J. Immunol. 2000, 164, 1625–1633.
    93. Lo-Man, R.; Vichier-Guerre, S.; Bay, S.; De'riaud, E.; Cantacuzéne, D.; Leclerc,
    C. Anti-tumor immunity provided by a synthetic multiple antigenic glycopeptide
    displaying a tri-Tn glycotope. J. Immunol. 2001, 166, 2849–2854.
    94. Jiang, Z. H.; Koganty, R. R. Synthetic vaccines: the role of adjuvants in immune
    targeting. Curr. Med. Chem. 2003, 10, 1423–1439.
    95. Kantchev, E. A. B.; Chang, C.-C.; Chang, D.-K. Direct Fmoc/tert-Bu solid phase
    synthesis of octamannosyl polylysine dendrimer-peptide conjugates. Biopolymer
    2006, 84, 232-240.
    96. Jiaang, W.-T.; Chang, M. Y.; Tseng, P.-H.; Chen, S.-T. A concise synthesis of the
    O-glycosylated amino acid building block; using selenoglycoside as a glycosyl
    donor. Tetrahedron. Lett. 2000, 41, 3127-3130.
    97. Krikorian, D.; Panou-Pomonis, E.; Voitharou, C.; Sakarellos, C.;
    Sakarellos-Daitsiotis, M. A peptide carrier with a built-in vaccine adjuvant:
    construction of immunogenic conjugates. Bioconjug. Chem. 2005, 16, 812–819.
    98. Zanini, D.; Roy, Rene, Synthesis of new α–thiosialodendrimers and their binding
    properties to the sialic acid specific lectin from Linax flavus. J. Am. Chem. Soc.
    1997, 119, 2088-2095.
    99. Lu, K.-C.; Hsieh, S.-Y.; Patkar, L. M.; Chen, C.-T.; Lin, C. -C. Simple and
    181
    efficient Per-O-acetylation of carbohydrates by lithium perchlorate catalyst.
    Tetrahedron, 2004, 60, 8967-8973.
    100. Hsieh, S.-Y.; Jan, M.-D.; Patkar, L. M.; Chen, C.-T.; Lin, C. -C. Synthesis of Pk
    trisaccharide with a carboxyl functionality linker. Carbohydr. Res. 2005, 340,
    49-57.
    101. Lin, C.-C.; Jan, M.-D.; Weng, S.-S; Lin, C.-C.; Chen, C.-T.
    O-Isopropylidenation of carbohydrate catalyzed by vanadyl triflate. Carbohydr.
    Res. 2006, 341, 1948-1953.
    102. Warren, L. The thiobarbituric acid assay of sialic acids. J. Biol. Chem. 1959, 234,
    1971-1975.
    103. Paerels, G. B.; Schut, J. The mechanism of the periodate– thiobarbituric acid
    reaction of sialic acids. Biochem. J. 1965, 96, 787-792.
    104. Ingale, S.; Wolfert, M. A.; Buskas, T.; Boons, G.-J. Increasing the antigenicity of
    synthetic tumor-associated carbohydrate antigens by targeting toll-like receptors.
    ChemBioChem 2009, 10, 455-463.
    105. Kuduk, S. D.; Schwarz, J. B.; Chen. X.-T.; Glunz, P. W.; Sames, D.; Ragupathi,
    G.; Livingston, P. O.; Danishefsky, S. J. Synthetic and immunological studies on
    clustered modes of mucin-related Tn and TF O-linkes antigens: The preparation
    of a glycopeptide-based vaccines for clinical trials against prostate cancer. J. Am.
    Chem. Soc. 1998, 120, 12474-12485.
    106. Bay, S.; Lo-Man, R.; Osinaga, E.; Nakada, H.; Leclerc, C.; Cantacuzene, D.
    Preparation of a multiple antigen glycopeptide (MAG) carry the Tn antigen. A
    possible approach to a synthetic carbohydrate vaccine. J. Pept. Res. 1997, 49,
    620-625.
    107. Lemieux, R. U.; Ratcliffe, R. M. The azidonitration of tri-O-acetyl-D-galactal.
    Can. J. Chem. 1979, 57, 1244-1251.
    182
    108. Czernecki, S.; Randriamandimby, D. Azido-phenylselenylation of protected
    glycols. Tetrahedron Lett. 1993, 34, 7915-1916.
    109. Czernecki, S.; Ayadi, E. Preparation of diversely protected
    2-azido-2-deoxyglycopyranoses from glycals. Can. J. Chem. 1995, 73, 343-350.
    110. Kida, shinya; Maeda, M.; Hojo, K.; Eto, Y.; Nakagawa, S.; Kawasaki, K. Studies
    on heterobifunctional cross-linking reagents, 6-maleimidohexanoic acid active
    esters. Chem. Pharm. Bull. 2007, 55, 685-687.
    111. Banchereau, J.; Steinman, R. M. Dendritic cells and the control of immunity.
    Nature 1998, 392, 245-252.
    112. Figdor, C. G.; Kooyk, Y. V.; Adema, G. J. C-type lectin receptors on dendritic
    cells and langerhans cells. Nat. Rev. Immuno. 2002, 2, 77-84.
    113. Apostolopoulos, V.; Barnes, N.; Pietersz, G. A.; McKenzie, I. F. Ex vivo
    targeting of the macrophage mannose receptor generates anti-tumor CTL
    responses. Vaccines 2000, 18, 3174-3184.
    114. Avrameas, A.; McIlroy, D.; Hosmalin, A.; Autran, B.; Debre, P.; Monsigny, M.;
    Roche, A. C.; Midoux, P.; Expression of a mannose/fucose membrane lectin on
    human dendritic cells. Eur. J. Immunol. 1996, 26, 394-400.
    115. Tan, M. C.; Mommaas, A. M.; Drijfhout, J. W.; Jordens, R.; Onderwater, J. J.;
    Verwoerd, D.; Mulder, A. A.; van der Heriden, A. N.; Scheidegger, D.; Oomen,
    L. C.; Ottenhoff, T. H.; Tulp, A.; Neefjes, J. J.; Koning, F. Mannose
    receptor-mediated uptake of antigens strongly enhances HLA class II-restricted
    antigen presentation by cultured dendritic cells. Eur. J. Immunol. 1997, 27,
    2426-2435.
    116. Lam, J. S.; Mansour, M. K.; Specht, C. A.; Levitz, S. M. A model vaccine
    exploiting fungal mannosylation to increase antigen immunogenicity. J. Immunol.
    2005, 175, 7496-7503.
    183
    117. Levitz, S. M.; Specht, C. A. The molecular basis for the immunogenicity of
    Cryptococcus neoformans mannoproteins. FEMS Yeast Res. 2006, 6, 513-524.
    118. Rene, R.; A decade of glycodendrimer chemistry. Trends in Glycoscience and
    Glycotechnology. 2003, 15, 291-310.
    119. Turnbull, W. B.; Stoddart, J. F. Design and synthesis of glycodendrimers.
    Reviews in Molecular Biotechnology, 2002, 90, 231-255.
    120. Woller, E. K.; Cloninger, M. J. The lectin-binding properties of six generations
    of mannose-functionalized dendrimers. Org. Lett. 2002, 4, 7-10.
    121. Grandjean, C.; Rommens, C.; Gras-Masse, H.; Melnyk, O. One-pot synthesis of
    antigen-bearing, lysine-based cluster mannosides using two orthogonal
    chemoselective ligation reactions. Angew. Chem. Int. Ed. 2000, 39, 1068-1072

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE