研究生: |
詹凡丹 Jan, Fan-Dan |
---|---|
論文名稱: |
腫瘤相關醣體疫苗合成與免疫研究 Synthese and Immunogenicities of Tumor-Associated Carbohydrate Vaccines |
指導教授: |
林俊成
Lin, Chun-Cheng |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2009 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 256 |
中文關鍵詞: | 疫苗 |
外文關鍵詞: | vaccines |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
腫瘤相關醣類抗原(tumor-associated carbohydrate antigen,TACAs)
通常大量存在於腫瘤細胞表面,而這些醣類抗原相繼被選擇用來開發
抗癌疫苗。由於醣類抗原的抗原性極低,因此在傳統疫苗設計上利用
聯接物將醣類抗原結合到載體KLH 增加其免疫抗原性,誘發免疫反
應產生IgG 抗體。然而,此一策略呈現幾項缺點,像是結合效率低、
結合反應再現性不佳、或是以此抗原所刺激的抗體大都為載體而非醣
類分子等。因此,本論文將著重於發展新的醣體疫苗策略來改善傳統
載體的缺點及提供新的疫苗設計策略。
本論文研究分為兩個部分,第一部分為合成GM3、Tn、與trimeric
Tn 醣體抗原並成功利用MHSu 連接物結合到具有以受體為媒介之抗
原攝入與高效呈現抗原的特性之poly C 蛋白質載體,並進行免疫實
驗分析。結果顯示此一疫苗策略不但可簡化結合反應而增加結合效率
並可有效活化B 細胞。第二部分為設計及合成以PAMAM 為核中心
結構之甘露醣載體之醣體抗原系統。目前已成功合成出以甘露醣為載
體之醣體抗原化合物153、156 與159 並進行動物免疫實驗,證實以
PAMAM 甘露醣為主之醣體抗原可有效活化B、T 細胞,提供新的醣
體疫苗設計策略。
1. Jones, C. Vaccines based on the cell surface carbohydrates of pathogenic bacteria.
An. Acad. Bras. Cienc. 2005, 77, 293-324.
2. Meezan, E.; Wu, H. C.; Black, P. H.; Robbins, P. W. Comparative studies on
carbohydrate-containing membrane components of normal and virus-transformed
mouse fibroblasts. Separation of glycoproteins and glycopeptides by sephadex
chromatography. Biochemistry 1969, 8, 2518–2524.
3. Turner, G. A. N-glycosylation of serum-proteins in disease and its investigation
using lectins. Clin. Chim. Acta. 1992, 208, 149–171.
4. Zhang, S.; Zhang, H. S.; Cordon-Cardo, C.; Reuter, V. E.; Singhal, A. K.; Lloyd,
K. O.; Livingston, P. O. Selection of tumor antigens as targets for immune attack
using immunohistochemistry: II. Blood group–related antigens. Int. J. Cancer
1997, 73, 50-56.
5. Zhang, S.; Cordon-Cardo, C.; Zhang, H. S.; Reuter, V. E.; Adluri, S.; Hamilton,
W. B.; Lloyd, K. O.; Livingston, P. O. Selection of tumor antigens as targets for
immune attack using immunohistochemistry: I. Focus on gangliosides. Int. J.
Cancer 1997, 73, 42-49.
6. Goldsby, R. A.; Kindt, T. J.; Osborne, B. A.; Kuby, J. Immunology; 5th ed. New
York; 2005, 1-78.
7. Danishefsky, S. J.; Allen, J. R. From the laboratory to the clinic: A retrospective
on fully synthetic carbohydrate based anticancer vaccines. Angew. Chem. Intl.
Eng. 2000, 39, 836–863.
8. Verez-Bencomo, V.; et al. A synthetic conjugate polysaccharide vaccine against
Haemophilus influenzae Type b. Science 2004, 305, 522-525.
9. Kaltgrad, E.; Gupta, S. S.; Punna, S.; Huang, C.-Y.; Chang, A.; Wong, C.-H.;
170
Finn, M. G.; Blixt, O. Anti-carbohydrate antibodies elicited by polyvalent
display on a viral scaffold. ChemBioChem 2007, 8, 1455-1462.
10. Wang, Q.; Ekanayaka, S. A.; Wu, J.; Zhang, J.; Guo, Z. Synthetic and
immunological studies of 5′-N-phenylacetyl STn to develop carbohydrate-based
cancer vaccines and to explore the impacts of linkage between carbohydrate
antigens and carrier proteins. Bioconjugate Chem. 2008, 19, 2060-2067.
11. Zhu, J.; Wan, Q.; Ragupathi, G.; Constantine, G. M.; Livingston, P. O.;
Danishefsky, S. J. Biologics through chemistry: total synthesis of a proposed
dual-acting vaccine targeting ovarian cancer by orchestration of oligosaccharide
and polypeptide domains. J. Am. Chem. Soc. 2009, 131, 4151-4158.
12. Ni, J.; Song, H.; Wang, Y.; Stamatos, N. M.; Wang, L. X. Toward a
carbohydrate-based HIV-1 vaccine: synthesis and immunological studies of
oligomannose-containing glycoconjugates. Bioconjugate Chem. 2006, 17,
493–500.
13. Buskas, T.; Li, Y. H.; Boons, G.-J. The immunogenicity of the tumor-associated
antigen Lewisy may be suppressed by a bifunctional cross-linker required for
coupling to a carrier protein. Chem. Eur. J. 2004, 10, 3517–3524.
14. Hakomori, S.; Zhang, Y. Glycosphingolipid antigens and cancer therapy. Chem.
Biol. 1997, 3, 97-104.
15. Toyokuni, T.; Singhal, A. K. Synthetic carbohydrate vaccines based on
tumor-associated antigens. Chem. Soc. Rev. 1995, 231-242.
16. Springer, G. F. Immunoreactive T and Tn epitopes in cancer diagnosis, prognosis,
and immunotherapy. J. Mol. Med. 1997, 75, 594–602.
17. Dube, D. H.; Bertozzi, C. R. Glycans in cancer and inflammation. potential for
therapeutics and diagnostics. Nat. Rev. Drug. Discov. 2005, 4, 477–488.
18. Slovin, S. F.; Keding, S. J.; Ragupathi, G. Carbohydrate vaccines as
171
immunotherapy for cancer. Immunol. Cell. Biol. 2005, 83, 418–428.
19. Ouerfelli, O.; Warren, J. D.; Wilson, R. M.; Danishefsky, S. J. Synthetic
carbohydrate based antitumor vaccines: challenges and opportunities. Expert.
Rev. Vaccines 2005, 4, 677–685.
20. Danishefsky, S. J.; Behar, V.; Raolph, J. T.; Lloyd, K. O. Application of the
assembly method to the concise synthesis of neoglycoconjugates of Ley and Leb
blood group determinants and of H-Type I and H-Type II oligosaccharides. J.
Am. Chem. Soc. 1995, 117, 5701-5711.
21. Bundle, D. R.; Rich, J. R.; Jacques, S.; Yu, H. N.; Nitz, M.; Ling, C. C.
Thiooligosaccharide conjugate vaccines evoke antibodied specific for native
antigen. Angew. Chem. Int. Ed. 2005, 44, 7725–7729.
22. Buskas, T.; Ingale, S.; Boons, G.-J. Towards a fully synthetic carbohydratebased
anticancer vaccine: synthesis and immunological evaluation of a lapidated
glycopeptide containing the tumor-associated Tn antigen. Angew. Chem. Int. Ed.
2005, 44, 5985–5988.
23. Toyokuni, T.; Dean, B.; Cai, S.; Boivin, D.; Hakomori, S.; Singhal, A. K.
Synthetic vaccines: synthesis of a dimeric Tn antigen-lipopeptide conjugate that
elicits immune responses against Tn-expressing glycoproteins. J. Am. Chem. Soc.
1994, 116, 395-396.
24. Slovin, S. F.; Ragupathi, G.; Musselli, C.; Olkiewicz. K.; Verbel, D.; Kuduk, S.
D.; Schwarz, J.; Sames, D.; Danishefsky, S. Livingston, P. O.; Scher, H. I. Fully
synthetic carbohydrate-based vaccines in biochemically relapsed prostate cancer:
clinical trial results with α-N-acetylgalactosamine-O-serine/threonine conjugate
vaccine. J. Clinical. Oncology. 2003, 21, 4292-4298.
25. Schneerson, R.; Barrera, O.; Sutton, A.; Robbins, J. B. Preparation,
characterization, and immunogenicity of Haemophilus influenzae type b
172
polysaccharide-protein conjugates. J. Exp. Med. 1980, 152, 361-376.
26. Rich, J. R.; Wakarchuk, W. W.; Bundle, D. R.; Chemical and chemoenzymatic
synthesis of S-linked ganglioside analogues and their protein conjugates for use
as immunogens. Chem. Eur. J. 2006, 12, 845-858.
27. Jacques, S.; Rich, J. R.; Ling, C. C.; Bundle, D. R. Chemoenzymatic synthesis of
GM3 and GM2 gangliosides contained a truncated ceramide functionalized for
glycoconjugatd synthesis and solid phase applications. Org. Biomol. Chem. 2006,
4, 142-154.
28. Ragupathi, G.; Park, T. K.; Zhang, S.; Kim, I. J.; Graber, L.; Adluri, S.; Lloyd, K.
O.; Danishefsky, S. J.; Livingston, P. O. Immunization of mice with a fully
synthetic Globo H antigen results in antibodies against human cancer cells: a
combined chemical-immunological approach to the fashioning of an anticancer
vaccines. Angew. Chem. Int. Ed. 1997, 36, 125-128.
29. Holmberg, L.; Sandmaier, B. Vaccination with Theratope (STn-KLH) as
treatment for breast cancer. Espert Rev. Vaccines 2004, 3, 655-663.
30. Zhu, J.; Wan, Q.; Lee, D.; Yang, G.; Spassova, M. K.; Ouerfelli, O.; Ragupathi,
G.; Damani, P.; Livingston, P. O.; Danishefsky, S. J. From synthesis to biologics:
preclinical data on a chemistry derived anticancer vaccine. J. Am. Chem. Soc.
2009, 131, 9298-9303.
31. Wan, Q.; Chen, J.; Chen, G.; Danishefsky, S. J. A potentially valuable advance
in the synthesis of carbohydrate-based anticancer vaccines through extended
cycloaddition chemistry. J. Org. Chem. 2006, 71, 8244-8249.
32. Ingale, S.; Wolfert, M. A.; Gaekwad, J.; Buskas, T.; Boons, G.-J. Robust
immune responsed elicited by a fully synthetic three-component vaccine. Nat.
Chem. Biol. 2007, 3, 663–667.
33. Moreno, C. A.; Rodriguez, R.; Oliveira, G. A.; Ferreira, V.; Nussenzweig, R. S.;
173
Moya Castro, Z. R.; Calvo-Calle, J. M.; Nardin, E. Preclinical evaluation of a
synthetic Plasmodium falciparum MAP malaria vaccine in Aotus monkeys and
mice. Vaccine, 1999, 18, 89-99.
34. De Silva, R. A.; Wang, Q. Chidley, T.; Appulage, D. K.; Andreana, P. A.
Immunological response from an entirely carbohydrate antigen : design of
synthetic vaccines based on Tn-PS A1 conjugates. J. Am. Chem. Soc. 2009, 131,
9622-9623.
35. Donnelly, J. J.; Jeffrey, B. U.; Linda, A. H.; Arthur, F.; Xiao-Pin, S.; Karen, R.
L.; John, W. S.; Allen, I. O.; Douglas, M.; Donna, M.; Margaret, A. L. Targeted
delivery of peptide epitopes to class I major histocompatibility molecules by a
modified Pseudomonas exotoxin Proc. Natl. Acad. Sci. USA 1993, 90,
3530-3534.
36. Kreitman, R. J. Immunotoxins in cancer therapy. Curr. Opin. Immunol. 1999, 11,
570-578
37. Foss, F. M.; Saleh, M. N.; Krueger, J. G.; Nichols, J. C.; Murphy, J. R.
Diphtheria toxin fusion proteins. In Clinical Applications of Immunotoxins.
Edited by Frankel AE. Berlin: Springer-Verlag: 1998, 63-81.
38. Pai, L. H.; Wittes, R.; Setser, A.; Willingham, M. C.; Pastan, I. Treatment of
advanced solid tumors with immunotoxin LMB-1: an antibody linked to
Pseudomonas exotoxin. Nat. Med. 1996, 2, 350-353.
39. Livingston, O.; Crimi, C.; Newman, M.; Higashimoto, Y.; Appella, E.; Sidney, J.;
Sette, A. A rational strategy to design multiepitope immunogens based on
multiple Th lymphocyte epitopes. J. Immunol. 2002, 168, 5499–5506.
40. Engering, A, J.; Cella, M.; Fluitsma, D.; Brockhaus, M.; Hoefsmit, E. C.;
Lanzavecchia, A.; Pieters, J. The mannose receptor functions as a high capacity
and broad specificity antigen receptor in human dendritic cells. Eur. J. Immunol.
174
1997, 27, 2417-2425.
41. Sheng, K.-C.; Kalkanidis, M.; Pouniotis, D. S.; Esparon, S.; Tang, C. K.;
Apostolopoulos, V.; Pietersz, G. A. Delivery of antigen using a novel
mannosylated dendrimer potentiates immunogenicity in vitro and in vivo. Eur. J.
Immunol. 2008, 38, 424-436.
42. Okawa, Y.; Howard, C. R.; Steward, M. W. Production of anti-peptide antibody
in mice following immunization with peptides conjugated to mannan. J. Immunol.
Meth. 1992, 142, 127-131.
43. Pietersz, G. A.; Li, W.; Popovski, V.; Caruana, J. A.; Apostolopoulos, V.;
McKenzie, I. F. Parameters for using mannan-MUC1 fusion protein to induce
cellular immunity. Cancer Immunol. Immunother. 1998, 45, 321-326.
44. Pietersz, G. A.; Loveland, B. E.; Sandrin, M. S.; McKenzie, I. F.
Oxidative/reductive conjugation of mannan to antigen selects for T1 or T2
immune responses. Proc. Natl. Acad .Sci. U. S. A. 1995, 92, 10128-10132.
45. Lees, C. J.; Apostolopoulos, V.; McKenzie, I. F. Cytokine production from
murine CD4 and CD8 cells after mannann-MUC1 immunization. J. Interferon
Cytokine Res. 1999, 19, 1373-1379.
46. Apostolopoulos, V.; Pietersz, G. A.; Gordon, S.; Martinez-Pomares, L.;
McKenzie, I. F. Aldehyde-mannan antigen complexes target the MHC class I
antigen-presentation pathway. Eur. J. Immunol. 2000, 30, 1714-1723.
47. Apostolopoulos, V.; Pietersz, G. A.; Tsibanis, A.; Tsikkinis, A.; Drakaki, H.;
Loveland, B. E.; Piddlesden, S. J. et al. Pilot phase III immunotherapy study in
early-stage breast cancer patients using oxidized mannan-MUC1. Breast Cancer
Res. 2006, 8, R27.
48. Bitton, R. J.; Guthmann, M. D.; Babri, M. R.; Carnero, A. J. L.; Alonso, D. F.;
Fainboim, L.; Gomez, D. E. Cancer vaccines: An update with special focus on
175
ganglioside antigens. Oncol. Rep. 2002, 9, 267-276.
49. Livingston, P. O. Approaches to augmenting the immunogenicity of melanoma
gangliosides from the whole melanoma cells to ganglioside-KLH conjugate
vaccines. Immunol. Rev. 1995, 145, 147-156.
50. McCool, T. L.; Harding, C. V.; Greenspan, N. S.; Schreiber, J. R. B- and T-Cell
immune responses to pneumococcal conjugate vaccines: divergence between
carrier- and polysaccharide-specific immunogenicity. Infect. Immun. 1999, 67,
4862-4869.
51. Alexander, J.; Del Guercio, M.-F.; Maewal, A.; Qiao, L.; Fikes, J.; Chesnut, R.
W.; Paulson, J.; Bundle, D. R.; DeFrees, S.; Sette, A. Linear PADRE T helper
epitope and carbohydrate B cell epitope conjugates induce specific high titer IgG
antibody responses. J. Immunol. 2000, 164, 1625–1633.
52. Lo-Man, R.; Vichier-Guerre, S.; Bay, S.; De'riaud, E.; Cantacuzéne, D.; Leclerc,
C. Anti-tumor immunity provided by a synthetic multiple antigenic glycopeptide
displaying a tri-Tn glycotope. J. Immunol. 2001, 166, 2849–2854.
53. Jiang, Z. H.; Koganty, R. R. Synthetic vaccines: the role of adjuvants in immune
targeting. Curr. Med. Chem. 2003, 10, 1423–1439.
54. Jackson, D. C.; Lau, Y. F.; Le T.; Suhrbier, A.; Deliyannis, G.; Cheers, C.; Smith,
C.; Zeng, W.; Brown, L. E. A totally synthetic vaccine of generic structure that
targets Toll-like receptor 2 on dendritic cells and promotes antibody or cytotoxic
T cell responses. Proc. Natl. Acad. Sci. USA 2004, 101, 15440–15445.
55. Lo-Man, R.; Vichier-Guerre, S.; Perraut, R.; Dériaud, E.; Huteau, V.;
BenMahamed, L.; Diop, O. M.; Livingston, P. O.; Bay, S.; Leclerc, C. A fully
synthetic therapeutic vaccine candidate targeting carcinomaassociated Tn
carbohydrate antigen induces tumor-specific antibodies in nonhuman primates.
Cancer Res. 2004, 64, 4987–4994
176
56. Krikorian, D.; Panou-Pomonis, E.; Voitharou, C.; Sakarellos, C.;
Sakarellos-Daitsiotis, M. A peptide carrier with a built-in vaccine adjuvant:
construction of immunogenic conjugates. Bioconjug. Chem. 2005, 16, 812–819.
57. Pan, Y.; Chefalo, P.; Nagy, N.; Harding, C.; Guo, Z. Synthesis and
immunological properties of N-modified GM3 antigens as therapeutic cancer
vaccines. J. Med. Chem. 2005, 48, 875–883.
58. Benito, J. M.; Gomez-Garcia, M; Mellet, C. O.; Baussanne, I.; Defaye, J.; Garcia
Fernandez, J. M. Optimizing saccharide-directed molecular delivery to biological
receptors: design, synthesis, and biological evaluation of
glycodendrimer-cyclodextrin conjugates. J. Am. Chem. Soc. 2004, 126,
10355-10363.
59. Galonic, D. P.; Gin, D. Y. Chemical glycosylation in the synthesis of
glycoconjugate antitumour vaccines. Nature, 2007, 446, 1000-1007.
60. Earle, M. A.; Manku, S.; Hultin, P. G.; Li, H.; Palcic, M. M. Chemoenzymatic
synthesis of a trimeric ganglioside GM3 analogue. Carbohydr. Res. 1997, 301,
1-4.
61. Jacques, S.; Rich, J. R.; Ling, C. C.; Bundle, D. R. Chemoenzymatic synthesis of
GM3 and GM2 ganglioside containing a truncated ceramide functionalized for
glycoconjugated synthesis and solid phase applications. Org. Biomol. Chem.
2006, 4, 142-154.
62. Smith, H.; Parson, N. J.; Cole, J. A. Sialylation of neisserial lipopolysaccharide:
a major influence on pathogenicity. Microb. Pathog. 1995, 19, 365-377.
63. Izumi, M.; Shen, G.-J.; Wacowich-Sgarbi, S.; Nakatani, T.; Plettenburg, O.;
Wong, C. -H. Microbial glycosyltransferases for carbohydrate synthesis: α-2,
3-sialyltransferase from Neisseria gonorrheae. J. Am. Chem. Soc. 2001, 123,
10909-10918.
177
64. Okamoto, K.; Goto, T. Glycosidation of sialic acid. Tetrahedron 1990, 46,
5835-5857.
65. DeNinno, M. P. The synthesis and glycosidation of N-acetylneuraminic acid.
Synthesis 1991, 583-593.
66. Ito, Y.; Gaudino, J. J.; Paulson, J. C. Synthesis of bioactive sialosides. Pure.
Appl. Chem. 1993, 65, 753-768.
67. Boons, G.-J.; Demchenko, A. V. Recent advances in O-sialyaltion. Chem. Rev.
2000, 100, 4539-4565.
68. Lin, C.-H.; Lin, C.-C. The Molecular Immunology of Complex Carbohydrates 2,
Kluwer-Plenum: New York, 2001.
69. Halcomb, R. L.; Cappell, M. D. Recent developments in technology for
glycosylation with sialic acid. J. Carbohydr. Chem. 2002, 21, 723-768.
70. kanie, O.; Kiso, M.; Hasegawa, A. Glycosylation using methylthioglycosides of
N-acetylneuraminic acid and dimethyl(methylthio)sulfonium triflate. J.
Carbohydr. Chem. 1988, 7, 501-506.
71. Hasegawa, A.; Ohki, H.; Nagahama, T.; Ishida, H.; Kiso, M. A facile, large-scale
preparation of the methyl 2-thio-glycoside of N-acetylneuraminic acid, and its
usefulness for the α-stereoselective synthesis of sialoglycosides. Carbohydr. Res.
1991, 212, 277-281.
72. Schmidt, R. R.; Behrendt, M.; Toepfer, A. Nitriles as solvents in glycosylation
reactions: highly selective β-glycoside synthesis. Synlett 1990, 694-696.
73. Vankar, Y. D.; Vankar, P. S.; Behrendr, M.; Schmidt, R. R. Synthesis of
β-O-glycosides using enol ether and imidate derived leaving groups. emphasis on
the use of nitriles as a solvent. Tetrahedron 1991, 47, 9985-9992.
74. Schmidt, R. R.; Rücker, E. Stereoselective glycosidations of uronic acids.
Tetrahedron Lett. 1980, 21, 1421-1424.
178
75. Birberg, W.; Lönn, H. Glycosylation with sialic acid at HO-3 of three different
O-protected D-galactosides in acetonitrile/dichloromethane at low temperature.
Tetrahedron Lett. 1991, 32, 7457-7458.
76. Murase, T.; Ishida, H.; Kiso, M.; Hasegawa, A. A facile regio- and
stereo-selective synthesis of α-glycosides of N-acetylneuraminic acid. Carbohydr.
Res. 1988, 184, c1-c4.
77. Murase, T.; Ishida, H.; Kiso, M.; Hasegawa, A. A facile regio- and stereoselective
synthesis of ganglioside GM3. Carbohydr. Res. 1989, 188, 71-80.
78. Hasegawa, A.; Ohki, H.; Nagahama, T.; Ishida, H.; Kiso, M. A facile, large-scale
preparation of the methyl 2-thioglycoside of N-acetyneuraminic acid, and its
usefulness for the α-stereoselective synthesis of sialoglycosides. Carbohydr. Res.
1991, 212, 277-281.
79. De Meo, C.; Demchenko, A. V.; Boons, G.-J. A stereoselective approach for the
synthesis of α-sialosides. J. Org. Chem. 2001, 66, 5490-5497.
80. Cheshev, P. E.; Khatuntseva, E. A.; Tsvetkov, Y. E.; Shashkov, A. S.; Nifantiev,
A. E. Synthesis of aminoethyl glycosides of the ganglioside GM1 and
asialo-GM1 oligosaccharide chains. Russ. J. Bioorg. Chem. 2004, 30, 68-79.
81. Pan, Y.; Chefalo, P.; Nagy, N.; Harding, C.; Guo, Z. Synthesis and
immunological properties of N-modified GM3 antigens as therapeutic cancer
vaccines. J. Med. Chem. 2005, 48, 875–883.
82. Allen, J. R.; Danishefsky, S. J.; New applications of the n-pentyl glycoside
method in the synthesis and immunoconjugation of fucosyl GM1: a highly
tumor-specific antigen associated with small cell lung carcinoma. J. Am. Chem.
Soc. 1999, 121, 10875-10882.
83. Sim, M. M.; Kondo, H.; Wong, C-H. Synthesis and use of glycosyl phosphates:
An effection route to glycosyl phosphate, sugar nucleotides, and glycosides. J.
179
Am. Chem. Soc. 1993, 115, 2260-2267.
84. Hanashima, S.; Castagner, B.; Esposito, D.; Nokami, T.; Seeberger, P. H.
Synthesis of a sialic acid α(2-3) galactose building block and its use in a linear
synthesis of Sialyl Lewis X. Org. Lett. 2007, 9, 1777-1779.
85. Liu, Y.; Ruan, X.; Li, X.; Li, Y. Efficient synthesis of a sialic acid α(2-3)
galactose building block and its application to the synthesis of ganglioside GM3.
J. Org. Chem. 2008, 73, 4287-4290.
86. Khatunstseva, E. A.; Yudina, O. N.; Tsvetkov, Y. E.; Grachev, A. A.;
Stepanenko, R. N.; Vlasenko, R. Y.; Lvov, V. L.; Nifantiev, N. E. Synthesis of
3-aminopropyl β-glycoside of sialyl-3’-lactose and derived neoglycoconjugates
as a tumor vaccine prototype and artificial antigens for the control of immune
response. Russ. Chem. Bull. Int. Ed. 2006, 255, 2095-2102.
87. Helling, F.; Shang, A.; Calves, M.; Zhang, S.; Ren, S.; Yu, R. K.; Oettgen, H. F.;
Livingston, P. O. GD3 vaccines for melanoma: superior immunogenicity of
keyhole limpet hemocyanin conjugate vaccines. Cancer Res. 1994, 54, 197-203
88. Reichel, F.; Ashton, P. R.; Boons, G.-J. Synthetic carbohydrate-based vaccines:
synthesis of an L-glycero-D-manno-heptose antigen-T-epitope-lipopetide
conjugate. Chem. Commun. 1997, 21, 2087–2088.
89. Dziadek, S.; Kowalczyk, D.; Kunz, H. Synthetic vaccines consisting of tumor
associated MUC1 glycopeptide antigens and bovine serum albumin. Angew.
Chem. Int. Ed. 2005, 44, 7624–7630.
90. Kudryashov, V.; Glunz, P. W.; Williams, L. J.; Hintermann, S.; Danishefsky, S.
J.; Lloyd, K. O. Toward optimized carbohydrate-based anticancer vaccines:
epitope clustering, carrier structure, and adjuvant all influence antibody
responses Lewisy conjugates in mice. Proc. Natl. Acad. Sci. USA 2001, 98,
3264–3269.
180
91. McCool, T. L.; Harding, C. V.; Greenspan, N. S.; Schreiber, J. R. B- and T-Cell
immune responses to pneumococcal conjugate vaccines: divergence between
carrier- and polysaccharide-specific immunogenicity. Infect. Immun. 1999, 67,
4862-4869.
92. .Alexander, J.; Del Guercio, M.-F.; Maewal, A.; Qiao, L.; Fikes, J.; Chesnut, R.
W.; Paulson, J.; Bundle, D. R.; DeFrees, S.; Sette, A. Linear PADRE T helper
epitope and carbohydrate B cell epitope conjugates induce specific high titer IgG
antibody responses. J. Immunol. 2000, 164, 1625–1633.
93. Lo-Man, R.; Vichier-Guerre, S.; Bay, S.; De'riaud, E.; Cantacuzéne, D.; Leclerc,
C. Anti-tumor immunity provided by a synthetic multiple antigenic glycopeptide
displaying a tri-Tn glycotope. J. Immunol. 2001, 166, 2849–2854.
94. Jiang, Z. H.; Koganty, R. R. Synthetic vaccines: the role of adjuvants in immune
targeting. Curr. Med. Chem. 2003, 10, 1423–1439.
95. Kantchev, E. A. B.; Chang, C.-C.; Chang, D.-K. Direct Fmoc/tert-Bu solid phase
synthesis of octamannosyl polylysine dendrimer-peptide conjugates. Biopolymer
2006, 84, 232-240.
96. Jiaang, W.-T.; Chang, M. Y.; Tseng, P.-H.; Chen, S.-T. A concise synthesis of the
O-glycosylated amino acid building block; using selenoglycoside as a glycosyl
donor. Tetrahedron. Lett. 2000, 41, 3127-3130.
97. Krikorian, D.; Panou-Pomonis, E.; Voitharou, C.; Sakarellos, C.;
Sakarellos-Daitsiotis, M. A peptide carrier with a built-in vaccine adjuvant:
construction of immunogenic conjugates. Bioconjug. Chem. 2005, 16, 812–819.
98. Zanini, D.; Roy, Rene, Synthesis of new α–thiosialodendrimers and their binding
properties to the sialic acid specific lectin from Linax flavus. J. Am. Chem. Soc.
1997, 119, 2088-2095.
99. Lu, K.-C.; Hsieh, S.-Y.; Patkar, L. M.; Chen, C.-T.; Lin, C. -C. Simple and
181
efficient Per-O-acetylation of carbohydrates by lithium perchlorate catalyst.
Tetrahedron, 2004, 60, 8967-8973.
100. Hsieh, S.-Y.; Jan, M.-D.; Patkar, L. M.; Chen, C.-T.; Lin, C. -C. Synthesis of Pk
trisaccharide with a carboxyl functionality linker. Carbohydr. Res. 2005, 340,
49-57.
101. Lin, C.-C.; Jan, M.-D.; Weng, S.-S; Lin, C.-C.; Chen, C.-T.
O-Isopropylidenation of carbohydrate catalyzed by vanadyl triflate. Carbohydr.
Res. 2006, 341, 1948-1953.
102. Warren, L. The thiobarbituric acid assay of sialic acids. J. Biol. Chem. 1959, 234,
1971-1975.
103. Paerels, G. B.; Schut, J. The mechanism of the periodate– thiobarbituric acid
reaction of sialic acids. Biochem. J. 1965, 96, 787-792.
104. Ingale, S.; Wolfert, M. A.; Buskas, T.; Boons, G.-J. Increasing the antigenicity of
synthetic tumor-associated carbohydrate antigens by targeting toll-like receptors.
ChemBioChem 2009, 10, 455-463.
105. Kuduk, S. D.; Schwarz, J. B.; Chen. X.-T.; Glunz, P. W.; Sames, D.; Ragupathi,
G.; Livingston, P. O.; Danishefsky, S. J. Synthetic and immunological studies on
clustered modes of mucin-related Tn and TF O-linkes antigens: The preparation
of a glycopeptide-based vaccines for clinical trials against prostate cancer. J. Am.
Chem. Soc. 1998, 120, 12474-12485.
106. Bay, S.; Lo-Man, R.; Osinaga, E.; Nakada, H.; Leclerc, C.; Cantacuzene, D.
Preparation of a multiple antigen glycopeptide (MAG) carry the Tn antigen. A
possible approach to a synthetic carbohydrate vaccine. J. Pept. Res. 1997, 49,
620-625.
107. Lemieux, R. U.; Ratcliffe, R. M. The azidonitration of tri-O-acetyl-D-galactal.
Can. J. Chem. 1979, 57, 1244-1251.
182
108. Czernecki, S.; Randriamandimby, D. Azido-phenylselenylation of protected
glycols. Tetrahedron Lett. 1993, 34, 7915-1916.
109. Czernecki, S.; Ayadi, E. Preparation of diversely protected
2-azido-2-deoxyglycopyranoses from glycals. Can. J. Chem. 1995, 73, 343-350.
110. Kida, shinya; Maeda, M.; Hojo, K.; Eto, Y.; Nakagawa, S.; Kawasaki, K. Studies
on heterobifunctional cross-linking reagents, 6-maleimidohexanoic acid active
esters. Chem. Pharm. Bull. 2007, 55, 685-687.
111. Banchereau, J.; Steinman, R. M. Dendritic cells and the control of immunity.
Nature 1998, 392, 245-252.
112. Figdor, C. G.; Kooyk, Y. V.; Adema, G. J. C-type lectin receptors on dendritic
cells and langerhans cells. Nat. Rev. Immuno. 2002, 2, 77-84.
113. Apostolopoulos, V.; Barnes, N.; Pietersz, G. A.; McKenzie, I. F. Ex vivo
targeting of the macrophage mannose receptor generates anti-tumor CTL
responses. Vaccines 2000, 18, 3174-3184.
114. Avrameas, A.; McIlroy, D.; Hosmalin, A.; Autran, B.; Debre, P.; Monsigny, M.;
Roche, A. C.; Midoux, P.; Expression of a mannose/fucose membrane lectin on
human dendritic cells. Eur. J. Immunol. 1996, 26, 394-400.
115. Tan, M. C.; Mommaas, A. M.; Drijfhout, J. W.; Jordens, R.; Onderwater, J. J.;
Verwoerd, D.; Mulder, A. A.; van der Heriden, A. N.; Scheidegger, D.; Oomen,
L. C.; Ottenhoff, T. H.; Tulp, A.; Neefjes, J. J.; Koning, F. Mannose
receptor-mediated uptake of antigens strongly enhances HLA class II-restricted
antigen presentation by cultured dendritic cells. Eur. J. Immunol. 1997, 27,
2426-2435.
116. Lam, J. S.; Mansour, M. K.; Specht, C. A.; Levitz, S. M. A model vaccine
exploiting fungal mannosylation to increase antigen immunogenicity. J. Immunol.
2005, 175, 7496-7503.
183
117. Levitz, S. M.; Specht, C. A. The molecular basis for the immunogenicity of
Cryptococcus neoformans mannoproteins. FEMS Yeast Res. 2006, 6, 513-524.
118. Rene, R.; A decade of glycodendrimer chemistry. Trends in Glycoscience and
Glycotechnology. 2003, 15, 291-310.
119. Turnbull, W. B.; Stoddart, J. F. Design and synthesis of glycodendrimers.
Reviews in Molecular Biotechnology, 2002, 90, 231-255.
120. Woller, E. K.; Cloninger, M. J. The lectin-binding properties of six generations
of mannose-functionalized dendrimers. Org. Lett. 2002, 4, 7-10.
121. Grandjean, C.; Rommens, C.; Gras-Masse, H.; Melnyk, O. One-pot synthesis of
antigen-bearing, lysine-based cluster mannosides using two orthogonal
chemoselective ligation reactions. Angew. Chem. Int. Ed. 2000, 39, 1068-1072