研究生: |
林禹辰 Lin, Yuh-Chern |
---|---|
論文名稱: |
使用3D測距攝影機實現老人看護系統 Elder-Care Surveillance using 3D SR-4000 Image Ranger Camera |
指導教授: |
陳永昌
Chen, Yung-Chang |
口試委員: |
張志永
鐘太郎 |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2011 |
畢業學年度: | 100 |
語文別: | 英文 |
論文頁數: | 62 |
中文關鍵詞: | 測距攝影機 、看護 、老人 、顫抖 、手勢 、疼痛 |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
近年來,老人看護監視系統已經成為一個重要的議題。隨著老年人口的成長,看護系統漸漸被廣泛討論與應用。然後,目前市面上絕大部份的老人看護監視系統,都必須要花費昂貴的開銷,不僅僅是金錢上的消費,精神上的消耗更是驚人。這類的系統有兩個重要的主題是必須要被重視的:系統必須不引人注目,以及其使用的普遍性。因此,我們也嘗試著將這兩項重要的議題,利用我們的系統來實踐。
在這篇論文裡,我們使用了SR-4000 image ranger這台攝影機,來擷取影像的深度資訊和強度資訊。利用這些有力的資料,我們建立了一個擁有顫抖偵測、疼痛反應偵測,和手勢辨識三種功能的老人看護系統。這個攝影機是一個呈長方體的小方塊。裡面安裝有紅外線發射器以及接收器。不僅可以很簡單便利的安裝在病床或是睡床上方適當的位置,而且不會引人注目,造成使用者的困擾。這個系統設有兩種緊急通知功能和利用手勢辨識的使用者操作介面,不必配帶任何額額外的裝置。長時間觀察的功能與較低價格的設備,也同樣被使用在這個系統當中。大部分對於這樣類型的設備有需求的老年人,都是需要長時間待在床上休息,並且沒有自己維生能力或是沒有大量的財富。這個系統花費了較一般系統便宜的金錢,而且能夠每天24小時的長時間運作,不但能夠滿足監視安全的重要性,也能夠達到普遍性和不引人注目性的原則。基於前面提到這些功能與優點,我們提出了這個系統和一些有趣的數據和結果。
Reference
[1] Soomro and D. Cavalcanti, “Opportunities and Challenges in Using WPAN and WLAN Technologies in Medical Environments,” in IEEE Commun. Mag., Feb. 2007. pp. 114-122
[2] Y. Xiao, X. Shen, B. Sun, and L. Cai, “Security and Privacy in RFID and Applications in Telemedicine,” in IEEE Commun. Mag., Vol. 44, No. 4, Apr. 2006.
[3] Y. B. Choi, J. S. Krause, H. Seo, K. E. Capitan, and K. Chung, “Telemedicine in the USA: Standardization through Information Management and Technical Applications,” in IEEE Commun. Mag., Vol. 44, No. 4, Apr. 2006.
[4] D. Hodgins, A. Bertsch, N. Post, M. Frischholz, B. Volckaerts, J. Spensley, J.M. Wasikiewicz, H. Higgins, F. von Stetten, and L. Kenney, “Healthy Aims: Developing New Medical Implants and Diagnostic Equipment,” IEEE Pervasive Computing, Vol. 7, No. 1, Jan./Mar. 2008. pp. 14 - 21.
[5] C.Y. Poon and Y. Zhang, and S. Bao, “A Novel Biometrics Method to Secure Wireless Body Area Sensor Networks for Telemedicine and M-Health,” in IEEE Commun. Mag., Vol. 44, No. 4, Apr. 2006.
[6] S. Garawi, R.S.H. Istepanian, and M.A. Abu-Rgheff, “3G Wireless Communications for Mobile Robotic Tele-Ultrasonography Systems,” in IEEE Commun. Mag., Vol. 44, No. 4, Apr. 2006.
[7] F. Marquis-Faulkes, S.J. McKenna, P. Gregor, and A.F. Newell, “Scenario-based drama as a tool for investigating user requirements with application to home monitoring for elderly people,” in Proc. 10th Int’l Conf. on Human-Computer Interaction (HCI’03), Crete, Greece, 2003.
[8] A. Mihailidis, B. Carmichael, and J. Boger, “The Use of Computer Vision in an Intelligent Environment to Support Aging-in-Place, Safety, and Independence in the Home,” IEEE Trans. Information Technology in Biomedicine, Vol. 8, No. 3, Sep. 2004. pp. 238-247
[9] M.E. Pollack, L. Brown, D. Colbry, C.E. McCarthy, C. Orosz, B. Peintner, S. Ramakrishnane, and I. Tsamardinos, “Autominder: An intelligent cognitive orthotic system for people with memory impairment,” in Robotics and Autonomous Systems, Vol. 44, No. 3-4, Sep. 2003. pp 273-282.
[10] B.P. Lo, J.L. Wang, and G.Z. Yang, “From Imaging Networks to Behavior Profiling: Ubiquitous Sensing for Managed Homecare of The Elderly,” in Proc. 3rd Int’l Conf. on Pervasive Computing, Munich, Germany, May 2005.
[11] A.M. Tabar, A. Keshavarz, and H. Aghajan, “Smart Home Care Network using Sensor Fusion and Distributed Vision-based Reasoning,” in Proc. 4th ACM Int’l Workshop on Video Surveillance and Sensor Network, Santa Barbara, USA, Nov. 2006.
[12] K. Z. Haigh, L. M. Kiff, J. Myers, V. Guralnik, C.W. Geib, J. Phelps, and T. Wagner, “The Independent Lifestyle Assistant (I.L.S.A.): AI Lessons Learned,” in Proc. 16th Innovative Applications of Artificial Intelligence Conf. (IAAI’04), San Jose, CA., Jul. 2004.
[13] F.D. Mola, G. Cabri, N. Muratori, R. Quitadamo, and F. Zambonelli, “The UbiMedic Framework to Support Medical Emergencies by Ubiquitous Computing,” in Int’l Trans. Systems Science & Applications, Vol. 1, No. 1, 2006. pp. 15-26
[14] C. Pesto, L. Selavo, Y. Chen, J. Ko, J.H. Lim, A. Terzis, A. Watt, J. Jeng, B. Chen, K. Lorincz, and M. Welsh, “Wireless Medical Sensor Networks in Emergency Response: Implementation and Pilot Results,” In Proc. 2008 IEEE Int’l Conf. on Technologies for Homeland Security, Waltham, MA, May 2008.
[15] D. Bottazzi, A. Corradi, and R. Montanari, “Context-Aware Middleware Solutions for Anytime and Anywhere Emergency Assistance to Elderly People,” in IEEE Commun. Mag., Vol. 44, No. 4, Apr. 2006. pp. 82-90
[16] T. Taleb, D. Bottazzi, M. Guizani, and H. Nait-Charif, ANGELAH: a framework for assisting elders at home, IEEE J. Sel. Areas Commun. 27 (4) (2009) 480–494.
[17] A. Gaddam, S.C. Mukhopadhyay, and G.S. Gupta, “Elder Care Based on Cognitive Sensor Network,” IEEE Sensors Journal, Vol. 11, No. 3, Mar. 2011
[18] Z. Zhou, X. Chen, Y.C. Chung, Z. He, T.X. Han, and J,M, Keller, “Activity Analysis, Summarization, and Visualization for Indoor Human Activity Monitoring,” IEEE Transactions on Circuits and Systems for Video Technology, Vol. 18, No, 11, Nov. 2008
[19] S. Hagler, D. Austin, T.L. Hayes, J. Kaye, and M. Pavel, “Unobtrusive and Ubiquitous In-Home Monitoring: A Methodology for Continuous Assessment of Gait Velocity in Elders,” IEEE Transactions on Biomedical Engineering, Vol. 57, No. 4, Apr. 2010
[20] F. Hu, Y. Xiao, and Q. Hao, “Congestion-Aware, Loss-Resilient Bio-Monitoring Sensor Networking for Mobile Health Applications,” IEEE Journal on Selected Areas in Communications, Vol. 27, No. 4, May 2009
[21] C.H. Kuo, F.C. Yang, M.Y. Tsai, and M.Y. Lee, “Artificial Neural Networks Based Sleep Motion Recognition Using Night Vision Cameras,” Biomedical Engineering-Applications, Basis and Communications, Vol. 16, No. 2, Apr. 2004
[22] W.H. Liao, and C.M. Yang, “Video-based Activity and Movement Pattern Analysis in Overnight Sleep Studies,” In IEEE International Conference on Pattern Recognition, Dec. 2008
[23] Y.T. Peng, C.Y. Lin, M.T. Sun, and C.A. Landis, “Multimodality Sensor System for Long-Term Sleep Quality Monitoring,” IEEE Transaction on Biomedical Circuits and System, Vol. 1, No. 3, Sep. 2007
[24] W. Huang, A.A.P. Wai, S.F. Foo, J. Biswas, C.C. Hsia, and K. Liou, “Multimodal Sleeping Posture Classification,” IEEE International Conference on Pattern Recognition, Aug. 2010
[25] C.C. Hsia, and K.J. Liou, “Analysis and Comparison of Sleeping Posture Classification Methods using Pressure Sensitive Bed System,” In 31st Annual International Conference of the IEEE EMBS Minneapolis, Minnesota, USA, Sep. 2009
[26] C. Occhiuzzi, and G. Marrocco, “The RFID Technology for Neurosciences: Feasibility of Limbs’ Monitoring in Sleep Diseases,” In IEEE Transactions on Information Technology in Biomedicine, Vol. 14, No. 1, Jan. 2010
[27] K. Nummiaro, E. Koller-Meier, and L. Van Gool, “An adaptive color-based particle filter,” IVC(21), No. 1, Jan. 2003, pp. 99-110
[28] C. Shan, Y. Wei, T. Tan, and F. Ojardias, “Real time tracking by combining particle filtering and mean shift,” Automatic Face and Gesture Recognition, 2004, pp. 669-674
[29] K. Okuma, A. Taleg, N. de Freitas, J. Little, and D. Lowe, “A boosted particle filter: multitarget detection and tracking,” European Conference on Computer Vision, 2004
[30] J. Vermaak, A. Doucet, and P. P’erez, “Maintaining multi-modality through mixture tracking,” International Conference on Computer Vision, 2004
[31] S. Zhou, R. Chellappa, and B. Moghaddam, “Appearance tracking using adaptive models in a particle filter,” Asian Conference on Computer Vision, Jan. 2004
[32] X. Zhu, J. Yang, and A. Waibel, “Segmenting hands of arbitrary color,” Automatic Face and Gesture Recognition, 2000, pp. 446-453
[33] T. Morris, O.S. Elshehry, “Hand segmentation from live video,” In The 2002 International Conference on Imaging Science, Systems, and Technology, UMIST, Manchester, UK, 2002
[34] M. Kass, A. Witkin, and D. Terzopoulos, “Snake: Active countour model,” International Journal of Computer Vision, Vol. 1, pp. 321-331, 1987
[35] V. Caselles, R. Kimmel, and G. Sapiro, “Geodesic active contours,” International Journal of Computer Vision, Vol. 22, No. 1, pp. 61-79, 1997
[36] A. Chakraborty, L. Staib, and J. Duncan, “Deformable boundary finding in medical images by integrating gradient and region information,” IEEE Transaction of Medical Image, Vol. 15, 1996
[37] N. Paragios, and R. Deriche, “Geodesic active regions for motion estimation and tracking,” In International Conference of Computer Vision, Corfu Greece, 1999
[38] F. Precioso and M. Barlaud, “B-Spline Active Contour with Handling of Topology Changes for Fast Video Segmentation,” JASP(2002), No. 6, Jun. 2002, pp. 555-560
[39] D. Williams and M. Shah, “A Fast Algorithm for Active Contours and Curvature Estimation,” CVGIP: Image Understanding, Vol. 55, No. 1, Jan. 1992, pp. 14-26
[40] http://www.cs.cmu.edu/~khaigh/ILSAEXTERNALWEBSITE/content/publications.html
[41] S. Peleg; M. Werman, and H. Rom, "A unified approach to the change of resolution: Space and gray-level". IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 11, No. 7,pp. 739–742, 1989
[42] J. Stolfi, “Personal Communication,” 1994
[43] B.D. Lucas and T. Kanade, “An Iterative Image Registration Technique with an Application to Stereo Vision”, DARPA Image Understanding Workshop, 1981, pp121–130 (see also IJCAI’81, pp674–679)
[44] F. Bellifemine, A. Poggi, and G. Rimassa. JADE: A FIPA-compliant agent framework. In Proceedings of The Practical Applications of Intelligent Agents and MultiAgent Technology (PAAM), pages 97–108, 1999. http://sharon.cselt.it/projects/jade/