簡易檢索 / 詳目顯示

研究生: 林禹辰
Lin, Yuh-Chern
論文名稱: 使用3D測距攝影機實現老人看護系統
Elder-Care Surveillance using 3D SR-4000 Image Ranger Camera
指導教授: 陳永昌
Chen, Yung-Chang
口試委員: 張志永
鐘太郎
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2011
畢業學年度: 100
語文別: 英文
論文頁數: 62
中文關鍵詞: 測距攝影機看護老人顫抖手勢疼痛
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    近年來,老人看護監視系統已經成為一個重要的議題。隨著老年人口的成長,看護系統漸漸被廣泛討論與應用。然後,目前市面上絕大部份的老人看護監視系統,都必須要花費昂貴的開銷,不僅僅是金錢上的消費,精神上的消耗更是驚人。這類的系統有兩個重要的主題是必須要被重視的:系統必須不引人注目,以及其使用的普遍性。因此,我們也嘗試著將這兩項重要的議題,利用我們的系統來實踐。
    在這篇論文裡,我們使用了SR-4000 image ranger這台攝影機,來擷取影像的深度資訊和強度資訊。利用這些有力的資料,我們建立了一個擁有顫抖偵測、疼痛反應偵測,和手勢辨識三種功能的老人看護系統。這個攝影機是一個呈長方體的小方塊。裡面安裝有紅外線發射器以及接收器。不僅可以很簡單便利的安裝在病床或是睡床上方適當的位置,而且不會引人注目,造成使用者的困擾。這個系統設有兩種緊急通知功能和利用手勢辨識的使用者操作介面,不必配帶任何額額外的裝置。長時間觀察的功能與較低價格的設備,也同樣被使用在這個系統當中。大部分對於這樣類型的設備有需求的老年人,都是需要長時間待在床上休息,並且沒有自己維生能力或是沒有大量的財富。這個系統花費了較一般系統便宜的金錢,而且能夠每天24小時的長時間運作,不但能夠滿足監視安全的重要性,也能夠達到普遍性和不引人注目性的原則。基於前面提到這些功能與優點,我們提出了這個系統和一些有趣的數據和結果。


    Table of Contents Abstract…………………………………………………………………..i Table of Contents………………………………………………………..ii List of Figures……………………………………………………...……v List of Tables…………………………………………………………...vii Chapter 1: Introduction………………………………………………...1 1.1 Motivation…………………………..…………………………...1 1.2 Elder-care Surveillance System……..…………………………..2 1.3 Recognition of Hand Gestures…………………………………..3 1.4 Thesis Organization……………………………………………..3 Chapter 2: Related Work……………………………………………….4 2.1 Overview…………………………………………………………4 2.2 Elder-Care or Patient-Care Surveillance or Emergency Warning System……………………………………………………………4 2.3 Bed-side monitoring system……………………………………...7 2.4 Recognition of Hand Gestures…………………………………...8 Chapter 3: The Optical Flow and The Earth Mover’s Distance……11 3.1 The Earth Mover’s Distance……………………………………11 3.1.1 Introduction to the Earth Mover’s Distance………...11 3.1.2 Model of the Earth Mover’s Distance……………….12 3.2 The Optical Flow………………………………………………..15 3.2.1 Introduction to the Optical Flow……………………..15 3.2.2 The basis of differential Optical Flow………………..16 3.2.3 Lucas-Kanade method in Optical Flow………………20 Chapter 4: Introduction on SR-4000 Image Ranger and Previous Work…………………………………………………..…..22 4.1 Characteristics and Instructions of SR-4000 Image Ranger……22 4.1.1 Overview……………………………………………..22 4.1.2 Characteristics of SR-4000 Image Ranger…………...23 4.1.3 Instructions of SR-4000 Image Ranger………………26 4.1.4 Implementation of Error Measurement………………29 4.2 Preprocessing Work of the Surveillance System………………..29 Chapter 5: The Elder-Care Surveillance System…………………….32 5.1 System Overview……………………………………………….32 5.2 Tremble Detection………………………………………………33 5.3 Pain Reaction Detection………………………………………...36 5.4 Hand Gesture Remote Controller……………………………….38 5.5 Summary………………………………………………………..41 Chapter 6: Experimental Result and Discussion…………………….43 6.1 Experimental Environment……………………………………..43 6.2 Experimental Result…………………………………………….45 6.2.1 Tremble Detection……………………………………45 6.2.2 Pain Reaction Detection……………………………...48 6.2.3 Recognition of Hand Gestures……………………….49 6.3 Discussion………………………………………………………53 6.3.1 Tremble Detection……………………………………53 6.3.2 Pain Reaction Detection……………………………...53 6.3.3 Recognition of Hand Gestures……………………….54 Chapter 7: Conclusion and Future Work…………………………….56 7.1 Conclusion………………………………………………………56 7.2 Future Work……………………………………………………..57 Reference……………………………………………………………….58

    Reference
    [1] Soomro and D. Cavalcanti, “Opportunities and Challenges in Using WPAN and WLAN Technologies in Medical Environments,” in IEEE Commun. Mag., Feb. 2007. pp. 114-122

    [2] Y. Xiao, X. Shen, B. Sun, and L. Cai, “Security and Privacy in RFID and Applications in Telemedicine,” in IEEE Commun. Mag., Vol. 44, No. 4, Apr. 2006.

    [3] Y. B. Choi, J. S. Krause, H. Seo, K. E. Capitan, and K. Chung, “Telemedicine in the USA: Standardization through Information Management and Technical Applications,” in IEEE Commun. Mag., Vol. 44, No. 4, Apr. 2006.

    [4] D. Hodgins, A. Bertsch, N. Post, M. Frischholz, B. Volckaerts, J. Spensley, J.M. Wasikiewicz, H. Higgins, F. von Stetten, and L. Kenney, “Healthy Aims: Developing New Medical Implants and Diagnostic Equipment,” IEEE Pervasive Computing, Vol. 7, No. 1, Jan./Mar. 2008. pp. 14 - 21.

    [5] C.Y. Poon and Y. Zhang, and S. Bao, “A Novel Biometrics Method to Secure Wireless Body Area Sensor Networks for Telemedicine and M-Health,” in IEEE Commun. Mag., Vol. 44, No. 4, Apr. 2006.

    [6] S. Garawi, R.S.H. Istepanian, and M.A. Abu-Rgheff, “3G Wireless Communications for Mobile Robotic Tele-Ultrasonography Systems,” in IEEE Commun. Mag., Vol. 44, No. 4, Apr. 2006.

    [7] F. Marquis-Faulkes, S.J. McKenna, P. Gregor, and A.F. Newell, “Scenario-based drama as a tool for investigating user requirements with application to home monitoring for elderly people,” in Proc. 10th Int’l Conf. on Human-Computer Interaction (HCI’03), Crete, Greece, 2003.

    [8] A. Mihailidis, B. Carmichael, and J. Boger, “The Use of Computer Vision in an Intelligent Environment to Support Aging-in-Place, Safety, and Independence in the Home,” IEEE Trans. Information Technology in Biomedicine, Vol. 8, No. 3, Sep. 2004. pp. 238-247

    [9] M.E. Pollack, L. Brown, D. Colbry, C.E. McCarthy, C. Orosz, B. Peintner, S. Ramakrishnane, and I. Tsamardinos, “Autominder: An intelligent cognitive orthotic system for people with memory impairment,” in Robotics and Autonomous Systems, Vol. 44, No. 3-4, Sep. 2003. pp 273-282.

    [10] B.P. Lo, J.L. Wang, and G.Z. Yang, “From Imaging Networks to Behavior Profiling: Ubiquitous Sensing for Managed Homecare of The Elderly,” in Proc. 3rd Int’l Conf. on Pervasive Computing, Munich, Germany, May 2005.

    [11] A.M. Tabar, A. Keshavarz, and H. Aghajan, “Smart Home Care Network using Sensor Fusion and Distributed Vision-based Reasoning,” in Proc. 4th ACM Int’l Workshop on Video Surveillance and Sensor Network, Santa Barbara, USA, Nov. 2006.

    [12] K. Z. Haigh, L. M. Kiff, J. Myers, V. Guralnik, C.W. Geib, J. Phelps, and T. Wagner, “The Independent Lifestyle Assistant (I.L.S.A.): AI Lessons Learned,” in Proc. 16th Innovative Applications of Artificial Intelligence Conf. (IAAI’04), San Jose, CA., Jul. 2004.

    [13] F.D. Mola, G. Cabri, N. Muratori, R. Quitadamo, and F. Zambonelli, “The UbiMedic Framework to Support Medical Emergencies by Ubiquitous Computing,” in Int’l Trans. Systems Science & Applications, Vol. 1, No. 1, 2006. pp. 15-26

    [14] C. Pesto, L. Selavo, Y. Chen, J. Ko, J.H. Lim, A. Terzis, A. Watt, J. Jeng, B. Chen, K. Lorincz, and M. Welsh, “Wireless Medical Sensor Networks in Emergency Response: Implementation and Pilot Results,” In Proc. 2008 IEEE Int’l Conf. on Technologies for Homeland Security, Waltham, MA, May 2008.

    [15] D. Bottazzi, A. Corradi, and R. Montanari, “Context-Aware Middleware Solutions for Anytime and Anywhere Emergency Assistance to Elderly People,” in IEEE Commun. Mag., Vol. 44, No. 4, Apr. 2006. pp. 82-90

    [16] T. Taleb, D. Bottazzi, M. Guizani, and H. Nait-Charif, ANGELAH: a framework for assisting elders at home, IEEE J. Sel. Areas Commun. 27 (4) (2009) 480–494.

    [17] A. Gaddam, S.C. Mukhopadhyay, and G.S. Gupta, “Elder Care Based on Cognitive Sensor Network,” IEEE Sensors Journal, Vol. 11, No. 3, Mar. 2011

    [18] Z. Zhou, X. Chen, Y.C. Chung, Z. He, T.X. Han, and J,M, Keller, “Activity Analysis, Summarization, and Visualization for Indoor Human Activity Monitoring,” IEEE Transactions on Circuits and Systems for Video Technology, Vol. 18, No, 11, Nov. 2008

    [19] S. Hagler, D. Austin, T.L. Hayes, J. Kaye, and M. Pavel, “Unobtrusive and Ubiquitous In-Home Monitoring: A Methodology for Continuous Assessment of Gait Velocity in Elders,” IEEE Transactions on Biomedical Engineering, Vol. 57, No. 4, Apr. 2010

    [20] F. Hu, Y. Xiao, and Q. Hao, “Congestion-Aware, Loss-Resilient Bio-Monitoring Sensor Networking for Mobile Health Applications,” IEEE Journal on Selected Areas in Communications, Vol. 27, No. 4, May 2009

    [21] C.H. Kuo, F.C. Yang, M.Y. Tsai, and M.Y. Lee, “Artificial Neural Networks Based Sleep Motion Recognition Using Night Vision Cameras,” Biomedical Engineering-Applications, Basis and Communications, Vol. 16, No. 2, Apr. 2004

    [22] W.H. Liao, and C.M. Yang, “Video-based Activity and Movement Pattern Analysis in Overnight Sleep Studies,” In IEEE International Conference on Pattern Recognition, Dec. 2008

    [23] Y.T. Peng, C.Y. Lin, M.T. Sun, and C.A. Landis, “Multimodality Sensor System for Long-Term Sleep Quality Monitoring,” IEEE Transaction on Biomedical Circuits and System, Vol. 1, No. 3, Sep. 2007

    [24] W. Huang, A.A.P. Wai, S.F. Foo, J. Biswas, C.C. Hsia, and K. Liou, “Multimodal Sleeping Posture Classification,” IEEE International Conference on Pattern Recognition, Aug. 2010

    [25] C.C. Hsia, and K.J. Liou, “Analysis and Comparison of Sleeping Posture Classification Methods using Pressure Sensitive Bed System,” In 31st Annual International Conference of the IEEE EMBS Minneapolis, Minnesota, USA, Sep. 2009

    [26] C. Occhiuzzi, and G. Marrocco, “The RFID Technology for Neurosciences: Feasibility of Limbs’ Monitoring in Sleep Diseases,” In IEEE Transactions on Information Technology in Biomedicine, Vol. 14, No. 1, Jan. 2010

    [27] K. Nummiaro, E. Koller-Meier, and L. Van Gool, “An adaptive color-based particle filter,” IVC(21), No. 1, Jan. 2003, pp. 99-110

    [28] C. Shan, Y. Wei, T. Tan, and F. Ojardias, “Real time tracking by combining particle filtering and mean shift,” Automatic Face and Gesture Recognition, 2004, pp. 669-674

    [29] K. Okuma, A. Taleg, N. de Freitas, J. Little, and D. Lowe, “A boosted particle filter: multitarget detection and tracking,” European Conference on Computer Vision, 2004

    [30] J. Vermaak, A. Doucet, and P. P’erez, “Maintaining multi-modality through mixture tracking,” International Conference on Computer Vision, 2004

    [31] S. Zhou, R. Chellappa, and B. Moghaddam, “Appearance tracking using adaptive models in a particle filter,” Asian Conference on Computer Vision, Jan. 2004

    [32] X. Zhu, J. Yang, and A. Waibel, “Segmenting hands of arbitrary color,” Automatic Face and Gesture Recognition, 2000, pp. 446-453

    [33] T. Morris, O.S. Elshehry, “Hand segmentation from live video,” In The 2002 International Conference on Imaging Science, Systems, and Technology, UMIST, Manchester, UK, 2002

    [34] M. Kass, A. Witkin, and D. Terzopoulos, “Snake: Active countour model,” International Journal of Computer Vision, Vol. 1, pp. 321-331, 1987

    [35] V. Caselles, R. Kimmel, and G. Sapiro, “Geodesic active contours,” International Journal of Computer Vision, Vol. 22, No. 1, pp. 61-79, 1997

    [36] A. Chakraborty, L. Staib, and J. Duncan, “Deformable boundary finding in medical images by integrating gradient and region information,” IEEE Transaction of Medical Image, Vol. 15, 1996

    [37] N. Paragios, and R. Deriche, “Geodesic active regions for motion estimation and tracking,” In International Conference of Computer Vision, Corfu Greece, 1999

    [38] F. Precioso and M. Barlaud, “B-Spline Active Contour with Handling of Topology Changes for Fast Video Segmentation,” JASP(2002), No. 6, Jun. 2002, pp. 555-560

    [39] D. Williams and M. Shah, “A Fast Algorithm for Active Contours and Curvature Estimation,” CVGIP: Image Understanding, Vol. 55, No. 1, Jan. 1992, pp. 14-26

    [40] http://www.cs.cmu.edu/~khaigh/ILSAEXTERNALWEBSITE/content/publications.html

    [41] S. Peleg; M. Werman, and H. Rom, "A unified approach to the change of resolution: Space and gray-level". IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 11, No. 7,pp. 739–742, 1989

    [42] J. Stolfi, “Personal Communication,” 1994

    [43] B.D. Lucas and T. Kanade, “An Iterative Image Registration Technique with an Application to Stereo Vision”, DARPA Image Understanding Workshop, 1981, pp121–130 (see also IJCAI’81, pp674–679)

    [44] F. Bellifemine, A. Poggi, and G. Rimassa. JADE: A FIPA-compliant agent framework. In Proceedings of The Practical Applications of Intelligent Agents and MultiAgent Technology (PAAM), pages 97–108, 1999. http://sharon.cselt.it/projects/jade/

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE